子序列问题
如果没接触过这种题目的话,本题还是很难的。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,
用动规五部曲来详细分析一波:
-
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了
-
递推公式
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值,这句话可以好好理解下,比较拗口。
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
-
dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
-
确定遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。
遍历i的循环在外层,遍历j则在内层
class Solution { public int lengthOfLIS(int[] nums) { int[] dp = new int[nums.length]; Arrays.fill(dp, 1); for (int i = 0; i < dp.length; i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) { dp[i] = Math.max(dp[i], dp[j] + 1); } } } int res = 0; for (int i = 0; i < dp.length; i++) { res = Math.max(res, dp[i]); } return res; } }
题目中没有明确说明,求的其实是连续的最长公共子数组,要求是连续的。
-
确定dp数组(dp table)以及下标的含义
dp[i][j]
:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]
。为什么不以i,j结尾呢,因为这样结尾初始化回方便一些。
-
递推公式
即当A[i - 1] 和B[j - 1]相等的时候,
dp[i][j] = dp[i - 1][j - 1] + 1;
可能有的同学想不明白为什么这样就能保证是连续相等,可以想一下dp数组的定义:下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为
dp[i][j]
。如果前面的不相等,则
dp[i - 1][j - 1] = 0
,就相当于是从头开始计数了。 -
初始化
根据dpi的定义,
dp[i][0]
和dp[0][j]
其实都是没有意义的!但dpi 和dp0要初始值,因为 为了方便递归公式
dp[i][j] = dp[i - 1][j - 1] + 1;
所以
dp[i][0]
和dp[0][j]
初始化为0。 -
顺序
外层for循环遍历A,内层for循环遍历B。
class Solution { public int findLength(int[] nums1, int[] nums2) { int res = 0; int[][] dp = new int[nums1.length+1][nums2.length+1]; for (int i = 1; i <= nums1.length; i++) { for (int j = 1; j <= nums2.length; j++) { if (nums1[i-1] == nums2[j-1]) { dp[i][j] = dp[i-1][j-1]+1; res = Math.max(dp[i][j], res); } } } return res; } }
本题和上一题718. 最长重复子数组的唯一区别就是:本题不要求连续了。
那在代码上的区别就是递推公式会有所变化,其他都一样,我们这里着重讲一下递推公式。
dp[i][j]
只有两种情况,
-
chars1[i-1] == chars2[j-1]
:相等的时候,和上一题的情况是一样的,直接dp[i][j] = dp[i-1][j-1]+1;
-
chars1[i-1] != chars2[j-1]
:不等的时候,需要整理出前面两个数组中哪个情况下重合的比较多,就选哪个例如:abc和ace,比较到下标为2时,c!=e。故需要看一下
abc和ac
以及ab和ace
哪个重合部分比较多。在代码上就是
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
class Solution { public int longestCommonSubsequence(String text1, String text2) { char[] chars1 = text1.toCharArray(); char[] chars2 = text2.toCharArray(); int[][] dp = new int[text1.length()+1][text2.length()+1]; for (int i = 1; i <= chars1.length; i++) { for (int j = 1; j <= chars2.length; j++) { if (chars1[i-1] == chars2[j-1]) { dp[i][j] = dp[i-1][j-1]+1; }else { dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]); } } } return dp[chars1.length][chars2.length]; } }
本题比较接近应用题的范畴了,看起来毫无头绪,但是如果准化成我们做的的题,就好做多了。
首先我们要搞清楚,题目到底要求的是什么,其实最大连线数,就是最长公共子序列。
要求连线不交叉,就是要求两个相同的子序列要尽可能的长嘛。
所以本题和上一题1143. 最长公共子序列的代码是一模一样的。没有任何变化。只要变个变量名就行
class Solution { public int maxUncrossedLines(int[] nums1, int[] nums2) { int[][] dp = new int[nums1.length+1][nums2.length+1]; for (int i = 1; i <= nums1.length; i++) { for (int j = 1; j <= nums2.length; j++) { if (nums1[i-1] == nums2[j-1]) { dp[i][j] = dp[i-1][j-1]+1; }else { dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]); } } } return dp[nums1.length][nums2.length]; } }
本题和1143. 最长公共子序列是很像的,两者的差别在于,一个要求找出两个字符串的最长公共子序列,一个要看s是否是y的子序列。
所以再相等的时候,这两道题的递推公式都是一样的
if (chars1[i-1] == chars2[j-1]) { dp[i][j] = dp[i-1][j-1]+1; }
区别就在于不同时候的处理。
本题因为s是不动的,所以每次发现不同的时候,把t往回删一个即可,s是不用动的
if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + 1; } else { dp[i][j] = dp[i][j-1]; }
整体代码如下
class Solution { public boolean isSubsequence(String s, String t) { int[][] dp = new int[s.length()+1][t.length()+1]; for(int i = 1; i <= s.length(); i++) { for(int j = 1; j <= t.length(); j++) { if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + 1; } else { dp[i][j] = dp[i][j-1]; } } } if(dp[s.length()][t.length()] == s.length()) { return true; }else { return false; } } }
本题相对于上一题难度又提升了一截,但是核心思路还是一样的,这次再完整的走一遍动规五部曲
-
dp数组:
dp[i][j]
:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
。这句话可能有些拗口,但是其实就是题目所求,只不过我们这里给定义成了i-1和j-1.为了方便初始化,前面也讲过原因。 -
递推公式
本题难就难在,递推公式真的不是很好想,倒也不是公式复杂,就是脑子绕不过来。总共有两种情况
-
s[i - 1] 与 t[j - 1]相等
-
用s[i - 1] 匹配,个数就是
dp[i-1][j-1]
-
不用s[i - 1] 匹配,个数就是
dp[i-1][j]
。此处不是很好理解,比如s = bagg, t = bag。s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
故s[i - 1] 与 t[j - 1]相等的时候,
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
-
-
s[i - 1] 与 t[j - 1] 不相等
不相等的时候就比较简单了,
dp[i][j]
只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; }else { dp[i][j] = dp[i-1][j]; }
-
-
初始化
我们由递推公式可以看到,
dp[i][j]
完全是由i-1,j和i-1,j-1组成的。而且没有在此基础上进行+1或者自增的操作,所以,肯定是不能设为0的。dp[i][0]
表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。那么
dp[i][0]
一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。dp[0][j]
:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。那么
dp[0][j]
一定都是0,s如论如何也变成不了t。dp[0][0]
应该是1,空字符串s,可以删除0个元素,变成空字符串t。for(int i = 0; i < s.length(); i++) { dp[i][0] = 1; }
-
确定遍历数组
从上到下,从左到右,这样保证dpi可以根据之前计算出来的数值进行计算。
class Solution { public int numDistinct(String s, String t) { int[][] dp = new int[s.length()+1][t.length()+1]; //初始化 for(int i = 0; i < s.length(); i++) { dp[i][0] = 1; } for(int i = 1; i <= s.length(); i++) { for(int j = 1; j <= t.length(); j++) { if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; }else { dp[i][j] = dp[i-1][j]; } } } return dp[s.length()][t.length()]; } }
本题和上一题很像,也是属于不相等就删除的,只不过上一题只在一个字符串中删除,本题需要在两个字符串中删除。
-
p数组:以i-1为结尾的word1和以j-1为结尾的word2,需要删除的字符个数。
-
递推公式:
-
相等:
dp[i][j] = dp[i-1][j-1];
-
不相等:
-
dp[i][j] = dp[i-1][j] + 1;
-
dp[i][j] = dp[i][j-1] + 1;
-
dp[i][j] = dp[i-1][j-1] + 2;
和前两种重复了,可以不考虑
dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);
-
-
-
初始化:根据dp数组的具体含义来想
for(int i = 0 ; i <= word1.length(); i++) { dp[i][0] = i; } for(int i = 0 ; i <= word2.length(); i++) { dp[0][i] = i; }
-
遍历顺序:
dp[i][j]
都是根据左上方、正上方、正左方推出来的。所以遍历的时候一定是从上到下,从左到右,这样保证
dp[i][j]
可以根据之前计算出来的数值进行计算。
class Solution { public int minDistance(String word1, String word2) { int[][] dp = new int[word1.length()+1][word2.length()+1]; //初始化 for(int i = 0 ; i <= word1.length(); i++) { dp[i][0] = i; } for(int i = 0 ; i <= word2.length(); i++) { dp[0][i] = i; } for(int i = 1; i<= word1.length(); i++) { for(int j = 1; j<= word2.length(); j++) { if(word1.charAt(i-1) == word2.charAt(j-1)) { dp[i][j] = dp[i-1][j-1]; }else { dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1); } } } return dp[word1.length()][word2.length()]; } }
本题相对于上一题难度又提升了一截,但是核心思路还是一样的,这次再完整的走一遍动规五部曲
-
dp数组:
dp[i][j]
:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
。这句话可能有些拗口,但是其实就是题目所求,只不过我们这里给定义成了i-1和j-1.为了方便初始化,前面也讲过原因。 -
递推公式
本题难就难在,递推公式真的不是很好想,倒也不是公式复杂,就是脑子绕不过来。总共有两种情况
-
s[i - 1] 与 t[j - 1]相等
-
用s[i - 1] 匹配,个数就是
dp[i-1][j-1]
-
不用s[i - 1] 匹配,个数就是
dp[i-1][j]
。此处不是很好理解,比如s = bagg, t = bag。s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
故s[i - 1] 与 t[j - 1]相等的时候,
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
-
-
s[i - 1] 与 t[j - 1] 不相等
不相等的时候就比较简单了,
dp[i][j]
只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; }else { dp[i][j] = dp[i-1][j]; }
-
-
初始化
我们由递推公式可以看到,
dp[i][j]
完全是由i-1,j和i-1,j-1组成的。而且没有在此基础上进行+1或者自增的操作,所以,肯定是不能设为0的。dp[i][0]
表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。那么
dp[i][0]
一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。dp[0][j]
:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。那么
dp[0][j]
一定都是0,s如论如何也变成不了t。dp[0][0]
应该是1,空字符串s,可以删除0个元素,变成空字符串t。for(int i = 0; i < s.length(); i++) { dp[i][0] = 1; }
-
确定遍历数组
从上到下,从左到右,这样保证dpi可以根据之前计算出来的数值进行计算。
class Solution { public int numDistinct(String s, String t) { int[][] dp = new int[s.length()+1][t.length()+1]; //初始化 for(int i = 0; i < s.length(); i++) { dp[i][0] = 1; } for(int i = 1; i <= s.length(); i++) { for(int j = 1; j <= t.length(); j++) { if(s.charAt(i-1) == t.charAt(j-1)) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; }else { dp[i][j] = dp[i-1][j]; } } } return dp[s.length()][t.length()]; } }
本题和上一题很像,也是属于不相等就删除的,只不过上一题只在一个字符串中删除,本题需要在两个字符串中删除。
-
p数组:以i-1为结尾的word1和以j-1为结尾的word2,需要删除的字符个数。
-
递推公式:
-
相等:
dp[i][j] = dp[i-1][j-1];
-
不相等:
-
dp[i][j] = dp[i-1][j] + 1;
-
dp[i][j] = dp[i][j-1] + 1;
-
dp[i][j] = dp[i-1][j-1] + 2;
和前两种重复了,可以不考虑
dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);
-
-
-
初始化:根据dp数组的具体含义来想
for(int i = 0 ; i <= word1.length(); i++) { dp[i][0] = i; } for(int i = 0 ; i <= word2.length(); i++) { dp[0][i] = i; }
-
遍历顺序:
dp[i][j]
都是根据左上方、正上方、正左方推出来的。所以遍历的时候一定是从上到下,从左到右,这样保证
dp[i][j]
可以根据之前计算出来的数值进行计算。
class Solution { public int minDistance(String word1, String word2) { int[][] dp = new int[word1.length()+1][word2.length()+1]; //初始化 for(int i = 0 ; i <= word1.length(); i++) { dp[i][0] = i; } for(int i = 0 ; i <= word2.length(); i++) { dp[0][i] = i; } for(int i = 1; i<= word1.length(); i++) { for(int j = 1; j<= word2.length(); j++) { if(word1.charAt(i-1) == word2.charAt(j-1)) { dp[i][j] = dp[i-1][j-1]; }else { dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1); } } } return dp[word1.length()][word2.length()]; } }
本题可以说是非常经典的一道困难题目了,据说字节面试的时候会经常考。下面我们就来一起仔细的分析下。
首先我们来分析下题目,题目中明确指明可以进行插入、删除、替换三个操作。
删除操作我们是很熟悉的,上面的诸多题目都是用的删除操作。
使用动规五部曲来进行分析。
-
确定dp数组含义
dp[i][j]
表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]
。至于为什么要定义为以i-1和j-1为结尾,前面的题目我们也说过了,是为了方便初始化。
-
确定推到公式:
我们还是分情况讨论
-
当前字符相等:
(word1.charAt(i-1) == word2.charAt(j-1)
相等的时候是不用进行任何操作的,即值和上一位的最近编辑距离相同:
dp[i][j] = dp[i-1][j-1];
-
当前字符不相等:
(word1.charAt(i-1) != word2.charAt(j-1)
-
删除:删除情况我们之前有过很详尽的分析了,本题是在word1和word2删除都可以。于是公式为:
dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1]) + 1
-
插入:插入其实本质上是删除的逆过程,比如:word1 = "ab", word2 = "a"。
如果按照插入的理解就是word2末尾插入一个b,按删除就是word1删除一个b。虽然插入和删除最后的出的单词是不同的,但是操作数是相同的,所以本题我们呢可以把插入和删除看作同一操作。
-
替换:替换在本题dp数组的定义下其实就是word1和word2前一位的操作数+1。
dp[i][j] = dp[i-1][j-1] + 1
-
所以整体的递推公式为:
dp[i][j] = Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1])) + 1;
-
-
初始化:
我们想一下dp数组的定义就可以很清楚的知道该怎么进行舒适化了。
dp[i][0]
:以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]
。那么dpi就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
那么dp[i][0]
同理。for(int i = 0; i <= word1.length(); i++) { dp[i][0] = i; } for(int j = 0; j <= word2.length(); j++) { dp[0][j] = j; }
-
遍历顺序
根据递推公式可以看出dpi是依赖左方,上方和左上方元素的。所以在dp矩阵中一定是从左到右从上到下去遍历。
class Solution { public int minDistance(String word1, String word2) { int[][] dp = new int[word1.length()+1][word2.length()+1]; for(int i = 0; i <= word1.length(); i++) { dp[i][0] = i; } for(int j = 0; j <= word2.length(); j++) { dp[0][j] = j; } for(int i = 1; i <= word1.length(); i++) { for(int j = 1; j <= word2.length(); j++) { if(word1.charAt(i-1) == word2.charAt(j-1)) { dp[i][j] = dp[i-1][j-1]; }else { dp[i][j] = Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1])) + 1; } } } return dp[word1.length()][word2.length()]; } }