子序列问题

文章介绍了使用动态规划解决几种不同类型的子序列问题,包括最长递增子序列、最长重复子数组、最长公共子序列、不相交的线、判断子序列、不同的子序列和编辑距离。每种问题都详细解析了dp数组的含义、递推公式、初始化和遍历顺序。
摘要由CSDN通过智能技术生成

子序列问题

300. 最长递增子序列

如果没接触过这种题目的话,本题还是很难的。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,

用动规五部曲来详细分析一波:

  1. dp[i]表示i之前包括i以nums[i]结尾的最长递增子序列的长度

    做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了

  2. 递推公式

    位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值,这句话可以好好理解下,比较拗口。

    if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

  3. dp[i]的初始化

    每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  4. 确定遍历顺序

    dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

    遍历i的循环在外层,遍历j则在内层

    class Solution {
        public int lengthOfLIS(int[] nums) {
            int[] dp = new int[nums.length];
            Arrays.fill(dp, 1);
            for (int i = 0; i < dp.length; i++) {
                for (int j = 0; j < i; j++) {
                    if (nums[i] > nums[j]) {
                        dp[i] = Math.max(dp[i], dp[j] + 1);
                    }
                }
            }
            int res = 0;
            for (int i = 0; i < dp.length; i++) {
                res = Math.max(res, dp[i]);
            }
            return res;
        }
    }

718. 最长重复子数组

题目中没有明确说明,求的其实是连续的最长公共子数组,要求是连续的。

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]

    为什么不以i,j结尾呢,因为这样结尾初始化回方便一些。

  2. 递推公式

    即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

    可能有的同学想不明白为什么这样就能保证是连续相等,可以想一下dp数组的定义:下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]

    如果前面的不相等,则dp[i - 1][j - 1] = 0,就相当于是从头开始计数了。

  3. 初始化

    根据dpi的定义,dp[i][0]dp[0][j]其实都是没有意义的!

    但dpi 和dp0要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

    所以dp[i][0]dp[0][j]初始化为0。

  4. 顺序

    外层for循环遍历A,内层for循环遍历B。

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int res = 0;
        int[][] dp = new int[nums1.length+1][nums2.length+1];
        for (int i = 1; i <= nums1.length; i++) {
            for (int j = 1; j <= nums2.length; j++) {
                if (nums1[i-1] == nums2[j-1]) {
                    dp[i][j] = dp[i-1][j-1]+1;
                    res = Math.max(dp[i][j], res);
                }
            }
        }
        return res;
    }
}

1143. 最长公共子序列

本题和上一题718. 最长重复子数组的唯一区别就是:本题不要求连续了。

那在代码上的区别就是递推公式会有所变化,其他都一样,我们这里着重讲一下递推公式。

dp[i][j]只有两种情况,

  • chars1[i-1] == chars2[j-1]:相等的时候,和上一题的情况是一样的,直接dp[i][j] = dp[i-1][j-1]+1;

  • chars1[i-1] != chars2[j-1]:不等的时候,需要整理出前面两个数组中哪个情况下重合的比较多,就选哪个

    例如:abc和ace,比较到下标为2时,c!=e。故需要看一下abc和ac以及ab和ace哪个重合部分比较多。

    在代码上就是dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);

class Solution {
   public int longestCommonSubsequence(String text1, String text2) {
        char[] chars1 = text1.toCharArray();
        char[] chars2 = text2.toCharArray();
        int[][] dp = new int[text1.length()+1][text2.length()+1];
        for (int i = 1; i <= chars1.length; i++) {
            for (int j = 1; j <= chars2.length; j++) {
                if (chars1[i-1] == chars2[j-1]) {
                    dp[i][j] = dp[i-1][j-1]+1;
                }else {
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[chars1.length][chars2.length];
    }
}

1035. 不相交的线

本题比较接近应用题的范畴了,看起来毫无头绪,但是如果准化成我们做的的题,就好做多了。

首先我们要搞清楚,题目到底要求的是什么,其实最大连线数,就是最长公共子序列

要求连线不交叉,就是要求两个相同的子序列要尽可能的长嘛。

所以本题和上一题1143. 最长公共子序列的代码是一模一样的。没有任何变化。只要变个变量名就行

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][] dp = new int[nums1.length+1][nums2.length+1];
        for (int i = 1; i <= nums1.length; i++) {
            for (int j = 1; j <= nums2.length; j++) {
                if (nums1[i-1] == nums2[j-1]) {
                    dp[i][j] = dp[i-1][j-1]+1;
                }else {
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[nums1.length][nums2.length];
    }
}

392. 判断子序列

本题和1143. 最长公共子序列是很像的,两者的差别在于,一个要求找出两个字符串的最长公共子序列,一个要看s是否是y的子序列。

所以再相等的时候,这两道题的递推公式都是一样的

if (chars1[i-1] == chars2[j-1]) {
    dp[i][j] = dp[i-1][j-1]+1;
}

区别就在于不同时候的处理。

本题因为s是不动的,所以每次发现不同的时候,把t往回删一个即可,s是不用动的

if(s.charAt(i-1) == t.charAt(j-1)) {
    dp[i][j] = dp[i-1][j-1] + 1;
} else {
    dp[i][j] = dp[i][j-1];
}

整体代码如下

class Solution {
    public boolean isSubsequence(String s, String t) {
        int[][] dp = new int[s.length()+1][t.length()+1];
        for(int i = 1; i <= s.length(); i++) {
            for(int j = 1; j <= t.length(); j++) {
                if(s.charAt(i-1) == t.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = dp[i][j-1];
                }
            }
        }
        if(dp[s.length()][t.length()] == s.length()) {
            return true;
        }else {
            return false;
        }
    }
}

115. 不同的子序列

本题相对于上一题难度又提升了一截,但是核心思路还是一样的,这次再完整的走一遍动规五部曲

  1. dp数组:

    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。这句话可能有些拗口,但是其实就是题目所求,只不过我们这里给定义成了i-1和j-1.为了方便初始化,前面也讲过原因。

  2. 递推公式

    本题难就难在,递推公式真的不是很好想,倒也不是公式复杂,就是脑子绕不过来。总共有两种情况

    • s[i - 1] 与 t[j - 1]相等

      • 用s[i - 1] 匹配,个数就是dp[i-1][j-1]

      • 不用s[i - 1] 匹配,个数就是dp[i-1][j]。此处不是很好理解,比如s = bagg, t = bag。s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

      故s[i - 1] 与 t[j - 1]相等的时候,dp[i][j] = dp[i-1][j-1] + dp[i-1][j];

    • s[i - 1] 与 t[j - 1] 不相等

      不相等的时候就比较简单了,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

    if(s.charAt(i-1) == t.charAt(j-1)) {
        dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
    }else {
        dp[i][j] = dp[i-1][j];
    }

  3. 初始化

    我们由递推公式可以看到,dp[i][j]完全是由i-1,j和i-1,j-1组成的。而且没有在此基础上进行+1或者自增的操作,所以,肯定是不能设为0的。

    dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

    那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

    dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

    那么dp[0][j]一定都是0,s如论如何也变成不了t。

    dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

    for(int i = 0; i < s.length(); i++) {
        dp[i][0] = 1;
    }

  4. 确定遍历数组

    从上到下,从左到右,这样保证dpi可以根据之前计算出来的数值进行计算。

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[s.length()+1][t.length()+1];
        //初始化
        for(int i = 0; i < s.length(); i++) {
            dp[i][0] = 1;
        }
        for(int i = 1; i <= s.length(); i++) {
            for(int j = 1; j <= t.length(); j++) {
                if(s.charAt(i-1) == t.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
                }else {
                    dp[i][j] = dp[i-1][j];
                }
            }
        }
        return dp[s.length()][t.length()];
    }
}

392. 判断子序列

本题和上一题很像,也是属于不相等就删除的,只不过上一题只在一个字符串中删除,本题需要在两个字符串中删除。

  1. p数组:以i-1为结尾的word1和以j-1为结尾的word2,需要删除的字符个数。

  2. 递推公式:

    • 相等: dp[i][j] = dp[i-1][j-1];

    • 不相等:

      • dp[i][j] = dp[i-1][j] + 1;

      • dp[i][j] = dp[i][j-1] + 1;

      • dp[i][j] = dp[i-1][j-1] + 2;和前两种重复了,可以不考虑

      dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);

  3. 初始化:根据dp数组的具体含义来想

    for(int i = 0 ; i <= word1.length(); i++) {
        dp[i][0] = i;
    }
    for(int i = 0 ; i <= word2.length(); i++) {
        dp[0][i] = i;
    }
  4. 遍历顺序:dp[i][j]都是根据左上方、正上方、正左方推出来的。

    所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length()+1][word2.length()+1];
        //初始化
        for(int i = 0 ; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        for(int i = 0 ; i <= word2.length(); i++) {
            dp[0][i] = i;
        }
        for(int i = 1; i<= word1.length(); i++) {
            for(int j = 1; j<= word2.length(); j++) {
                if(word1.charAt(i-1) == word2.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1];
                }else {
                    dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}

115. 不同的子序列

本题相对于上一题难度又提升了一截,但是核心思路还是一样的,这次再完整的走一遍动规五部曲

  1. dp数组:

    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。这句话可能有些拗口,但是其实就是题目所求,只不过我们这里给定义成了i-1和j-1.为了方便初始化,前面也讲过原因。

  2. 递推公式

    本题难就难在,递推公式真的不是很好想,倒也不是公式复杂,就是脑子绕不过来。总共有两种情况

    • s[i - 1] 与 t[j - 1]相等

      • 用s[i - 1] 匹配,个数就是dp[i-1][j-1]

      • 不用s[i - 1] 匹配,个数就是dp[i-1][j]。此处不是很好理解,比如s = bagg, t = bag。s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

      故s[i - 1] 与 t[j - 1]相等的时候,dp[i][j] = dp[i-1][j-1] + dp[i-1][j];

    • s[i - 1] 与 t[j - 1] 不相等

      不相等的时候就比较简单了,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

    if(s.charAt(i-1) == t.charAt(j-1)) {
        dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
    }else {
        dp[i][j] = dp[i-1][j];
    }

  3. 初始化

    我们由递推公式可以看到,dp[i][j]完全是由i-1,j和i-1,j-1组成的。而且没有在此基础上进行+1或者自增的操作,所以,肯定是不能设为0的。

    dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

    那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

    dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

    那么dp[0][j]一定都是0,s如论如何也变成不了t。

    dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

    for(int i = 0; i < s.length(); i++) {
        dp[i][0] = 1;
    }

  4. 确定遍历数组

    从上到下,从左到右,这样保证dpi可以根据之前计算出来的数值进行计算。

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[s.length()+1][t.length()+1];
        //初始化
        for(int i = 0; i < s.length(); i++) {
            dp[i][0] = 1;
        }
        for(int i = 1; i <= s.length(); i++) {
            for(int j = 1; j <= t.length(); j++) {
                if(s.charAt(i-1) == t.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
                }else {
                    dp[i][j] = dp[i-1][j];
                }
            }
        }
        return dp[s.length()][t.length()];
    }
}

583. 两个字符串的删除操作

本题和上一题很像,也是属于不相等就删除的,只不过上一题只在一个字符串中删除,本题需要在两个字符串中删除。

  1. p数组:以i-1为结尾的word1和以j-1为结尾的word2,需要删除的字符个数。

  2. 递推公式:

    • 相等: dp[i][j] = dp[i-1][j-1];

    • 不相等:

      • dp[i][j] = dp[i-1][j] + 1;

      • dp[i][j] = dp[i][j-1] + 1;

      • dp[i][j] = dp[i-1][j-1] + 2;和前两种重复了,可以不考虑

      dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);

  3. 初始化:根据dp数组的具体含义来想

    for(int i = 0 ; i <= word1.length(); i++) {
        dp[i][0] = i;
    }
    for(int i = 0 ; i <= word2.length(); i++) {
        dp[0][i] = i;
    }
  4. 遍历顺序:dp[i][j]都是根据左上方、正上方、正左方推出来的。

    所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length()+1][word2.length()+1];
        //初始化
        for(int i = 0 ; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        for(int i = 0 ; i <= word2.length(); i++) {
            dp[0][i] = i;
        }
        for(int i = 1; i<= word1.length(); i++) {
            for(int j = 1; j<= word2.length(); j++) {
                if(word1.charAt(i-1) == word2.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1];
                }else {
                    dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1);
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}

72. 编辑距离

本题可以说是非常经典的一道困难题目了,据说字节面试的时候会经常考。下面我们就来一起仔细的分析下。

首先我们来分析下题目,题目中明确指明可以进行插入、删除、替换三个操作。

删除操作我们是很熟悉的,上面的诸多题目都是用的删除操作。

使用动规五部曲来进行分析。

  1. 确定dp数组含义

    dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

    至于为什么要定义为以i-1和j-1为结尾,前面的题目我们也说过了,是为了方便初始化。

  2. 确定推到公式:

    我们还是分情况讨论

    • 当前字符相等:(word1.charAt(i-1) == word2.charAt(j-1)

      相等的时候是不用进行任何操作的,即值和上一位的最近编辑距离相同:dp[i][j] = dp[i-1][j-1];

    • 当前字符不相等:(word1.charAt(i-1) != word2.charAt(j-1)

      • 删除:删除情况我们之前有过很详尽的分析了,本题是在word1和word2删除都可以。于是公式为:

        dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1]) + 1

      • 插入:插入其实本质上是删除的逆过程,比如:word1 = "ab", word2 = "a"。

        如果按照插入的理解就是word2末尾插入一个b,按删除就是word1删除一个b。虽然插入和删除最后的出的单词是不同的,但是操作数是相同的,所以本题我们呢可以把插入和删除看作同一操作。

      • 替换:替换在本题dp数组的定义下其实就是word1和word2前一位的操作数+1。

        dp[i][j] = dp[i-1][j-1] + 1

    所以整体的递推公式为:dp[i][j] = Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1])) + 1;

  3. 初始化:

    我们想一下dp数组的定义就可以很清楚的知道该怎么进行舒适化了。

    dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。那么dpi就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;那么dp[i][0] 同理。

    for(int i = 0; i <= word1.length(); i++) {
        dp[i][0] = i;
    }
    for(int j = 0; j <= word2.length(); j++) {
        dp[0][j] = j;
    }
  4. 遍历顺序

    根据递推公式可以看出dpi是依赖左方,上方和左上方元素的。所以在dp矩阵中一定是从左到右从上到下去遍历。

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length()+1][word2.length()+1];
​
        for(int i = 0; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        for(int j = 0; j <= word2.length(); j++) {
            dp[0][j] = j;
        }
        for(int i = 1; i <= word1.length(); i++) {
            for(int j = 1; j <= word2.length(); j++) {
                if(word1.charAt(i-1) == word2.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1];
                }else {
                    dp[i][j] = Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1])) + 1;
                }
            }
        }
        return dp[word1.length()][word2.length()];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值