转眼间毕业8年多了,工作中算法用的不多,一些基本概念都模糊了,查阅了写资料,重新梳理一遍
一.时间复杂度定义
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。
一般用大写O()来表示算法的时间复杂度写法,通常叫做大O记法。
一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
二.时间复杂度计算的基本法则
- 用常数1来取代运行时间中所有加法常数。
- 修改后的运行次数函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数。
三.时间复杂度计算的基本步骤
1. 计算出基本操作的执行次数T(n)
基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。
2. 计算出T(n)的数量级
求T(n)的数量级,只要将T(n)进行如下一些操作:
忽略常量、低次幂和最高次幂的系数
令f(n)=T(n)的数量级。
3. 用大O来表示时间复杂度
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
一个示例:
(1) int num1, num2; 1
(2) for(int i=0; i<n; i++){ n
(3) num1 += 1; n
(4) for(int j=1; j<=n; j*=2){ n*log2 n
(5) num2 += num1; n*log2 n
(6) }
(7) }
分析:
1.每个语句的频度已用蓝色标出
T(n) = 2 + 4n + 3n*log2n
注意:由于每次j乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^x=n 得到x=logn。所以单单for(int j=1; j<=n; j*=2){ 的频度位log2n
2.忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*log2n
3.lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)
= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3
当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0
所以极限等于3。
T(n) = O(n*log2n)
四.常见时间复杂度
复杂度 | 标记符号 | 描述 |
常量(Constant) | O(1) | 操作的数量为常数,与输入的数据的规模无关。 n = 1,000,000 -> 1-2 operations |
对数(Logarithmic) | O(log2 n) | 操作的数量与输入数据的规模 n 的比例是 log2 (n)。 n = 1,000,000 -> 30 operations |
线性(Linear) | O(n) | 操作的数量与输入数据的规模 n 成正比。 n = 10,000 -> 5000 operations |
平方(Quadratic) | O(n^2) | 操作的数量与输入数据的规模 n 的比例为二次平方。 n = 500 -> 250,000 operations |
立方(Cubic) | O(n^3) | 操作的数量与输入数据的规模 n 的比例为三次方。 n = 200 -> 8,000,000 operations |
指数(Exponential) | O(2^n) O(k^n) O(n!) | 指数级的操作,快速的增长。 n = 20 -> 1048576 operations |
1.常量阶 O(1)
首先顺序结构的时间复杂度。下面这个算法,是利用高斯定理计算1,2,……n个数的和
int sum = 0, n = 100; /*执行一次*/
sum = (1 + n) * n / 2; /*执行一次*/
printf("%d",sum); /*执行一次*/
这个算法的运行次数函数是f (n) =3。 根据我们推导大0阶的方法,第一步就是把常数项3 改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为0(1)。
另外,我们试想一下,如果这个算法当中的语句 sum = (1+n)*n/2; 有10 句,则与示例给出的代码就是3次和12次的差异。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n 的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是0(1)。
2.对数阶 O(log2 n)
int count = 1;
while (count < n){
count = count * 2;
/*时间复杂度为O(1)的程序步骤序列*/
}
由于每次count乘以2之后,就距离n更近了一分。 也就是说,有多少个2相乘后大于n,则会退出循环。 由2^x=n 得到x=logn。 所以这个循环的时间复杂度为O(logn)。
3.线性阶 O(n)
线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。
int i;
for(i = 0; i < n; i++){
/*时间复杂度为O(1)的程序步骤序列*/
}
4、平方阶 O(n^2)
int i, j;
for(i = 0; i < n; i++){
for(j = 0; j < n; j++){
/*时间复杂度为O(1)的程序步骤序列*/
}
}
一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。 所以这段代码的时间复杂度为O(n^2)。
如果外循环的循环次数改为了m,时间复杂度就变为O(mXn)。
所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
那么下面这个循环嵌套,它的时间复杂度是多少呢?
int i, j;
for(i = 0; i < n; i++){
for(j = i; j < n; j++){ /*注意j = i而不是0*/
/*时间复杂度为O(1)的程序步骤序列*/
}
}
由于当i=0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i=n-1时,执行了1次。所以总的执行次数为:
用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留时(n^2)/2; 第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n^2)。
5.立方阶 O(n^3)
int i, j;
for(i = 1; i < n; i++)
for(j = 1; j < n; j++)
for(j = 1; j < n; j++){
/*时间复杂度为O(1)的程序步骤序列*/
}
上门三重循环了(1^2+2^2+3^2+……+n^2) = n(n+1)(2n+1)/6次,按照上述大O阶推导方法,时间复杂度为O(n^3)。
6.指数阶
int aFunc(int n) {
if (n <= 1) {
return 1;
} else {
return aFunc(n - 1) + aFunc(n - 2);
}
}
运行次数,T(0) = T(1) = 1,同时 T(n) = T(n - 1) + T(n - 2) + 1,这里的 1 是其中的加法算一次执行。显然 T(n) = T(n - 1) + T(n - 2) 是一个斐波那契数列,通过归纳证明法可以证明,当 n >= 1 时 T(n) < (5/3)^n,同时当 n > 4 时 T(n) >= (3/2)^n。所以该方法的时间复杂度可以表示为 O((5/3)^n),简化后为 O(2^n)。
五.常见时间复杂度以及比较
而通常时间复杂度与运行时间有一些常见的比例关系:
复杂度 | 10 | 20 | 50 | 100 | 1000 | 10000 | 100000 |
O(1) | <1s | <1s | <1s | <1s | <1s | <1s | <1s |
O(log2(n)) | <1s | <1s | <1s | <1s | <1s | <1s | <1s |
O(n) | <1s | <1s | <1s | <1s | <1s | <1s | <1s |
O(n*log2(n)) | <1s | <1s | <1s | <1s | <1s | <1s | <1s |
O(n2) | <1s | <1s | <1s | <1s | <1s | 2s | 3-4 min |
O(n3) | <1s | <1s | <1s | <1s | 20s | 5 hours | 231 days |
O(2n) | <1s | <1s | 260 days | hangs | hangs | hangs | hangs |
O(n!) | <1s | hangs | hangs | hangs | hangs | hangs | hangs |
O(nn) | 3-4 min | hangs | hangs | hangs | hangs | hangs | hangs |
文章参考:
1.https://univasity.iteye.com/blog/1164707
2.https://univasity.iteye.com/blog/1164707
3.https://blog.csdn.net/daijin888888/article/details/66970902