二叉树进阶面试题

本文探讨了二叉树的非递归先序、中序、后序遍历,二叉树的构建与遍历,分层遍历,最近公共祖先问题。还涉及二叉搜索树转化为双向链表及根据前序、中序或后序遍历构造二叉树的算法,最后讲解了如何从二叉树创建字符串。
摘要由CSDN通过智能技术生成

实现二叉树的非递归 先序, 中序, 后序遍历


非递归实现

二叉树的构建和遍历

在线OJ

题目描述:
 编一个程序,读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。 例如如下的先序遍历字符串: ABC##DE#G##F### 其中“#”表示的是空格,空格字符代表空树。建立起此二叉树以后,再对二叉树进行中序遍历,输出遍历结果。


import java.util.Scanner;

public class Main {
    public static class TreeNode{
        char val;
        TreeNode leftNode;
        TreeNode rightNode;
        public TreeNode (char val){
            this.val = val;
        }
    }
static int index = 0;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        while(in.hasNext()){
            index = 0;
            String s = in.nextLine();
            char[] array = s.toCharArray();
            TreeNode root = build(array);
            inorder(root);
            System.out.println();
        }
    }
    //中序遍历
    private static void inorder(TreeNode root) {
        if(root == null){
            return;
        }
        inorder(root.leftNode);
        System.out.print(root.val + " ");
        inorder(root.rightNode);
    }
    //先序构建
    
    private static TreeNode build(char[] array) {
    //叶子节点返回空值
        if(array[index] == '#'){
            return null;
        }
        //    ABC##DE#G##F###
        //中序 c b e g d f a
        TreeNode root = new TreeNode(array[index]);
        index++;
        root.leftNode = build(array);
        index++;
        root.rightNode = build(array);
        return root;
    }
}

在这里插入图片描述

题目分析:
 题目给定先序遍历字符串ABC##DE#G##F### 的字符串,要求使用这个字符串进行勾线一个二叉树.
先序遍历是以中左右的顺序遍历的,我们可以知道只有先序遍历结果是不能得出正确的二叉树结构的.但是题目给出了空节点的位置.

代码分析:
TreeNode root = new TreeNode(array[index]);
index++;
root.leftNode = build(array);
index++;
root.rightNode = build(array);
return root;

顺着先序遍历的顺序,从根节点开始递归创建节点,直到叶子结点 '# ',从叶子节点向上递归赋值,从而形成树的结构.

注意事项:
index值使用static关键字修饰,在面对多个样例的时候,要注意将其值重新赋值为0;

先序遍历可以使使用标号来判断位置(待补)


二叉树的分层遍历

在线OJ
和普通的分层遍历不同的是,这道题返回值要求使用List<List>结构作为返回值.所以在遍历过程中,我们需要进行销量小量的修改

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
     static List<List<Integer>> result = new ArrayList<>();
    public List<List<Integer>> levelOrder(TreeNode root) {
result = new ArrayList<>();
        if(root == null){
            return result;
        }
        cengadd(root,0);
        return result;
    }
    private  void cengadd(TreeNode root,int index) {
    //防止数组越界
        if(index == result.size()){
            result.add(new ArrayList<>());
        }
      //层序遍历  
        result.get(index).add(root.val);
        if(root.left!=null){
        //使用index +1 来控制层数.
        cengadd(root.left,index+1);
        }
        if(root.right !=null){
        cengadd(root.right,index+1);
        }

    }
}

 使用static关键字进行修饰index变量.增加一个方法添加参数index.
使用index来控制每层使用的ArrayList对象.然后就和普通的层序遍历没什么区别了.
注意事项:
 在每次递归的时候,如果index 层数和当前外层list的元素个数,也就是存放每层元素的ArrayLIst数量相同.因为index使用的时候是取下标操作也就是代表着,此时没有这个内层AyyayList对象进行操作.所以要进行添加新的AyyayList对象

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
    List<List<Integer>> list = new ArrayList<>();
        if(root == null){
            return list;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        while (!queue.isEmpty()) {
            ArrayList<Integer> list2 = new ArrayList<>();
            int size = queue.size();
            //每次循环遍历一层的所有元素
            //将其添加到这一层的ArrayList中并且将下一层非空子树添加到队列
            for (int i = 0; i < size; i++) {
                TreeNode poll = queue.poll();
                list2.add(poll.val);
                if (poll.left != null) {
                    queue.offer(poll.left);
                }
                if (poll.right != null) {
                    queue.offer(poll.right);
                }
            }
            list.add(list2);
        }
        return list;
    }
}

和上一个代码不同的地方在于,使用了队列存放将要遍历的节点.使用for循环 ,将一层的每个节点的值add入内层ArrayList对象中.并将每一个节点的左右非空子树存入队列.方便下次遍历.
注意事项 : 在使用循环 for (int i = 0; i < size; i++) {的时候,要注意size不能使用queue.size();
因为在代码运行过程中.它的值是会不断变换.会导致循环不能正常结束.

最近公共祖先

在线OJ
题目描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
在这里插入图片描述
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
 
    static TreeNode lca = null;

    public static TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null) {
            return null;
        }
          dfs(root, p, q);
        return lca;

    }

    private static boolean dfs(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null) {
            return false;
        }
        int mid = (root == p || root == q) ? 1 : 0;
        int leftok = dfs(root.left, p, q) ? 1 : 0;
        int rightok = dfs(root.right, p, q) ? 1 : 0;
        if (mid + leftok + rightok == 2) {
            lca = root;
        }
        return (mid + leftok + rightok) >0;
    }
}

题目分析:
在这里插入图片描述
公共祖先包括什么:
在上图中 7 这个节点的祖先是: 7 2 5 3 这四个节点.
怎么能找到两个节点的公共祖先呢,我们可以分开进行查找

int mid = (root == p || root == q) ? 1 : 0;
int leftok = dfs(root.left, p, q) ? 1 : 0;
int rightok = dfs(root.right, p, q) ? 1 : 0;
  1. 判断当前节点是否为 p或者q.
  2. 判断左子树是否有 p或者q.
  3. 判断左子树是否有 p或者q.

当满足条件(mid + leftok + rightok == 2)的时候.有6种情况

  1. 当前节点为p ,他的左子树为q
  2. 当前节点为q ,他的左子树为p
  3. 当前节点为p ,他的右子树为q
  4. 当前节点为q ,他的左子树为p
  5. 当前节点的左子树为p,右子树为q
  6. 当前节点的左子树为q,右子树为p
    此时将当前节点进行修改.
    此时这个节点便是我们要找的公共祖先.

二叉搜索树与双向链表(未理解)

在线OJ
题目描述:
 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。

二叉搜索树
 对于任意节点来说,左子树节点小于根节点,右子树节点大于根节点.
二叉搜索树的意义便是查找.
题目分析:
在这里插入图片描述观察双向链表和树节点的结构发现有相似之处
在这里插入图片描述

 所以我们可以有这样的思路:
中序遍历

  1. 递归的把左子树转成双向链表.
  2. 把根节点尾插到左子树的链表末尾.
  3. 再递归的把右子树转成双向链表
  4. 把根节点头插到右子树的链表前面
public static TreeNode Convert(TreeNode pRootOfTree) {
        // 判定特殊情况
        if (pRootOfTree == null) {
            return null;
        }
        if (pRootOfTree.left == null && pRootOfTree.right == null) {
            return pRootOfTree;
        }
        // 处理一般情况
        // 1. 先递归的把左子树转成链表
        //    得到的 leftHead 可能是 null, 下面在使用的时候要考虑到这个细节
        TreeNode leftHead = Convert(pRootOfTree.left);
        // 2. 把根节点尾插到 leftHead 这个链表中
        //    需要找到 leftHead 的末尾节点才能尾插
        TreeNode leftTail = leftHead;
        while (leftTail != null && leftTail.right != null) {
            leftTail = leftTail.right;
        }
        if (leftHead != null) {
            leftTail.right = pRootOfTree;
            pRootOfTree.left = leftTail;
        }
        // 3. 递归的转换右子树了
        TreeNode rightHead = Convert(pRootOfTree.right);
        // 4. 把当前节点头插到右侧链表的前面
        if (rightHead != null) {
            pRootOfTree.right = rightHead;
            rightHead.left = pRootOfTree;
        }
        // 需要返回这个最终链表的头结点.
        // 注意, leftHead 可能是空链表. 如果是空链表
        // 整体的头结点就应该是 pRootOfTree 了
        return leftHead != null ? leftHead : pRootOfTree;
    }

根据一棵树的前序遍历与中序遍历构造二叉树。

在线OJ

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

class Solution {
  public static int index = 0;
   public TreeNode buildTree(int[] preorder, int[] inorder) {

        index = 0;

        List<Integer> list = new ArrayList<>();
        for (int i :
                inorder) {
            list.add(i);
        }
        return _buildTree(preorder, list);
    }

    private TreeNode _buildTree(int[] preorder, List<Integer> list) {
        if (list.isEmpty()) {
            return null;
        }
        if (index >= preorder.length) {
            return null;
        }
        //创建节点
        TreeNode root = new TreeNode(preorder[index]);
        //确定在中序结果中的位置
        int pos = list.indexOf(root.val);
        index++;

        root.left = _buildTree(preorder, list.subList(0, pos));
        root.right = _buildTree(preorder, list.subList(pos + 1, list.size()));
        return root;

    }

}

在这里插入图片描述
部分递归过程如上图:主要思路就是,依据先序遍历顺序,然后再中序结果中查找相应位置从而确定节点位置.因为在每次递归的过程中.list集合都会被依照左右子树从而分解.每次递归的list结果越短,当list集合为空的时候就到达叶子结点

根据一棵树的中序遍历与后序遍历构造二叉树([课堂不讲解,课后完成作业])。

在线OJ

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
   public static int index = 0;
    public static TreeNode buildTree(int[] inorder, int[] postorder) {
        index = postorder.length-1;
        List<Integer> list = new ArrayList<>();
        for (int i :
                inorder) {
            list.add(i);
        }
        return _buildTree(postorder,list);
    }

    private static TreeNode _buildTree(int[] postorder, List<Integer> list) {
        if(list.isEmpty()){
            return null;
        }
        if(index < 0){
            return null;
        }
        TreeNode root = new TreeNode(postorder[index]);
        int pos = list.indexOf(root.val);
        index--;
        root.right = _buildTree(postorder,list.subList(pos+1,list.size()));
        root.left = _buildTree(postorder,list.subList(0,pos));

        return root;
    }
}

思路基本和上一个题相同,但是由于后序遍历的原因,我们需要从后续结果的末尾进行遍历,并且对其递归顺序和进行修改.先递归右子树,后递归左子树.

二叉树创建字符串

在线OJ
写题的时候死活想不出来,这个递归是怎么写的.

 public static String tree2str(TreeNode t) {
        //如果当前节点为空
        if(t==null)
            return "";
        //左右子树为空.
        if(t.left==null && t.right==null)
            return t.val+"";
        //右子树为空,左子树不为空
        if(t.right==null)
            return t.val+"("+tree2str(t.left)+")";
        return t.val+"("+tree2str(t.left)+")("+tree2str(t.right)+")";

            //如果当前节点有左右子树,在两个子树的结果外加上一个(  左子树  右子树  )
    }

查看题解后发现

还是不会!
官方题解分了四种情况

  1. 当前节点有两个孩子的时候,需要在两个孩子的结果的外层都加上一层
  2. 当前节点没有孩子,就不需要在节点上面加上任何括号.
  3. 如果节点只有左节点,递归过程中,只需要在左孩子的结果外加上一层括号
  4. 如果只有右孩子,我们不仅需要 () 表示左孩子为空并且也要对右孩子加括号

分析这四种情况,我们可以对判断顺序进行调整.

  1. 先判断当前节点是否为空节点
    返回空字符串
  2. 接着判断是不是没有子树的节点.
    返回数字即可,不需要括号
  3. 如果进行到第三步,那么肯定有子树,我们就 判断是否为只有左子树的情况
    如果有只左子树,我们输出左孩子当前节点的结果 并加上 “(” +递归调用方法返回左子树的其他结果 + “)”
  4. 只有右子树和两个孩子的情况在处理上都相同,要拼接结果和 “(” + 左子树的返回结果 + “)(” + 右子树的返回结果+")"
public static StringBuilder builder = new StringBuilder();

   public static String tree2str(TreeNode t) {
       if(t == null){
           return "";
       }
       helper(t);
       //第一个节点不需要括号包括
       builder.deleteCharAt(0);
       builder.deleteCharAt(builder.length()-1);
       return builder.toString();
   }

   private static void helper(TreeNode root) {
       if(root == null){
           return;
       }
       builder.append("(");
       builder.append(root.val);
       helper(root.left);
       //左节点为空,且有右节点.要增加个()表示左子树为空
       if(root.left == null && root.right != null){
           builder.append("()");
       }
       //递归右子树
       helper(root.right);
       builder.append(")");
   }

因为整体要使用先序遍历的顺序
这种思路会更简单点,使用StringBuilder来拼接字符串遇到节点

  1. 首先添加一个( val
  2. 然后判断是否有左子树进行递归.
  3. 如果遇到子节点为空右节点存在的情况,需要拼接一个空()来表示左子树为空
  4. 然后对右子树进行递归
  5. 最后补上右括号

但是开头第一个节点不需要()包括所以我们需要对builder的开始和末尾进行删除.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值