扑克洗牌问题

时间限制:1秒        内存限制:128M

题目描述

给您2n张牌,编号为1,2,3,4,5……n,n+1,……2n,这也是最初牌的顺序。一次洗牌是把序列变为n+1,1,n+2,2,n+3,3……2n,n。可以证明,对于任意自然数n,都可以在经过m次洗牌后重新得到初始的顺序。编程对于小于10000的自然数n(n从键盘输入)的洗牌,求出重新得到初始顺序的洗牌次数m的值,并显示洗牌过程。

输入描述

输入整数n  

输出描述

显示洗牌过程,并输出洗牌次数m  

样例

输入

5

输出

1 2 3 4 5 6 7 8 9 10
1:6 1 7 2 8 3 9 4 10 5
2:3 6 9 1 4 7 10 2 5 8
3:7 3 10 6 2 9 5 1 8 4
4:9 7 5 3 1 10 8 6 4 2
5:10 9 8 7 6 5 4 3 2 1
6:5 10 4 9 3 8 2 7 1 6
7:8 5 2 10 7 4 1 9 6 3
8:4 8 1 5 9 2 6 10 3 7
9:2 4 6 8 10 1 3 5 7 9
10:1 2 3 4 5 6 7 8 9 10
m=10

Ac代码:

#include<bits/stdc++.h>
using namespace std;
int main() {
	int n,a[10001],b[10001];
	cin>>n;
	for(int i=1; i<=2*n; i++) {
		a[i]=i;
		cout<<a[i]<<" ";
	}
	cout<<endl;
	int m=0;
	while(1) {
		m++;
		for(int i=1; i<=n; i++) {
			b[2*i]=a[i];
			b[2*i-1]=a[n+i];
		}
		for(int i=1; i<=2*n; i++) {
			a[i]=b[i];
		}
		cout<<m<<":";
		for(int i=1; i<=2*n; i++) {
			cout<<a[i]<<" ";
		}
		cout<<endl;
		int f=0;
		for(int i=1; i<=2*n; i++) {
			if(a[i]!=i) {
				f=1;
			}

		}
		if(f==0) {
			cout<<"m="<<m;
			break;
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值