HMoS
码龄5年
关注
提问 私信
  • 博客:52,651
    52,651
    总访问量
  • 9
    原创
  • 100,031
    排名
  • 1,631
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2019-06-24
博客简介:

shuaibuzhi1mian的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    3
    当前总分
    335
    当月
    1
个人成就
  • 获得117次点赞
  • 内容获得37次评论
  • 获得661次收藏
  • 代码片获得1,157次分享
创作历程
  • 1篇
    2024年
  • 1篇
    2023年
  • 5篇
    2022年
  • 2篇
    2021年
成就勋章
TA的专栏
  • 树莓派
    1篇
  • 论文阅读分享
    1篇
  • 机器学习可解释性
    4篇
  • pytorch学习记录
    2篇
  • 机器学习
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习tensorflow图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

AUC指标详解

介绍机器学习经典指标AUC的具体用法
原创
发布博客 2024.07.20 ·
945 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

TransMIL_MIL文献阅读(1)

多实例学习(MIL)文献阅读记录—— "TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification"
原创
发布博客 2023.01.10 ·
887 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

机器学习可解释性(三)——影响函数(Influence function)推导

影响函数是一个应用广泛的统计学习概念,可以用来衡量样本对模型参数的影响程度,也就是样本的重要性。可以被用于提供模型的解释,实现机器学习算法的可解释性。本文主要从影响函数的用途出发,介绍影响函数的计算方法和推导过程。
原创
发布博客 2022.09.06 ·
7692 阅读 ·
22 点赞 ·
13 评论 ·
43 收藏

pytorch addcmul函数用法

介绍pytorch中addcmul函数的用法,用公式和代码共同说明。
原创
发布博客 2022.07.18 ·
2042 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习可解释性(二) —— 类激活映射(CAM)

类激活映射(Class Activation Mapping,CAM)方法作为一类显著图算法的“开山之作”,其思想影响了后续诸多方法的产生。本文将在CAM的基础上,介绍的GradCAM, GradCAM++, LayerCAM的实现原理及相关实验。
原创
发布博客 2022.06.25 ·
5106 阅读 ·
11 点赞 ·
6 评论 ·
39 收藏

基于树莓派的智能小车

树莓派小车的初次尝试,实现避障、单线巡线、颜色追踪等简单功能。
原创
发布博客 2022.03.05 ·
19408 阅读 ·
21 点赞 ·
3 评论 ·
446 收藏

VAE变分自编码器

Variational Autoencoder(VAE)作为一类深度生成模型,是由 Kingma 等人于 2014 年提出的基于变分贝叶斯(Variational Bayes,VB)推断的生成式网络结构。与传统的自编码器通过数值的方式描述潜在空间不同,它以概率的方式描述对潜在空间的观察,在数据生成方面表现出了巨大的应用价值。是无监督学习领域的重要研究课题。
原创
发布博客 2022.01.16 ·
684 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch hook机制

简单介绍了pytorch的hook机制;对比了基于Tensor的hook以及基于Module的hook;代码实现了简单例子,说明了hook的使用方法。
原创
发布博客 2021.12.29 ·
4857 阅读 ·
15 点赞 ·
3 评论 ·
27 收藏

机器学习可解释性(一) —— 累积局部效应图(ALE)

一、序言深度学习的“黑盒”特性如今越来越让计算机工作者困扰,因此模型的可解释性问题在近些年越来越受到人们的关注。作为该领域的萌新,我开始一点点学习相关领域的内容,参考的书籍是:《Interpretable Machine Learning》。书中从最基本的可解释性算法讲起,再到基于深度神经网络的可解释性算法。随着对本书学习的深入,我也将更新关于书籍的更多内容的学习记录。二、算法介绍2.1 算法背景累积局部效应 (Accumulated Local Effects Plot) 描述了特征平均如何影响机
原创
发布博客 2021.08.28 ·
10941 阅读 ·
22 点赞 ·
12 评论 ·
78 收藏