1.霍纳法则介绍
a. 求多项式值的一个快速算法
b. 假设有n+2个数,a0,a1,… an和x的组成的一个多项式,形式如下:
,通常都是一项一项的求和然后累加,这样的话要进行
次乘法运算和n次加法运算,而霍纳法则就是一个改进的一个算法。通过变换得到如下式子:
这种求值的方法便是霍纳法则。(复杂度 为)
2. 霍纳法则递归实现
a.递归终止条件
when i == (n - 1) exe a[i]*x + a[i - 1];
b.递归公式
honer() * x + a[i];
3. C语言代码实现
/**
* 霍纳法则,秦九韵算法
*/
int horner(int a[], int i, int n, int x)
{
if(i == (n - 1)) {
return a[i]*x + a[i - 1];
}
else {
i += 1;
return horner(a, i, n, x ) * x + a[i - 1];
}
}
4.测试代码
#include <stdio.h>
/**
* 霍纳法则,秦九韵算法
*/
int horner(int a[], int i, int n, int x)
{
if(i == (n - 1)) {
return a[i]*x + a[i - 1];
}
else {
i += 1;
return horner(a, i, n, x ) * x + a[i - 1];
}
}
int main(int argc, char *argv[])
{
int a[] = {1, 1, 1, 1};
int sum = horner(a, 0, 4, 2);
printf("sum = %d\n",sum);
return 0;
}
5.测试执行结果