考研数学一《概率论与数理统计》第一章 事件与概率
本章围绕事件关系、概率计算与独立性展开,是概率论的基础核心内容。以下从两大核心考点系统梳理知识体系:
考点一:事件关系与概型计算
1. 事件关系
(1)包含关系
- 定义:若事件 A A A 发生必然导致事件 B B B 发生,则称 A A A 包含于 B B B,记作 A ⊂ B A \subset B A⊂B
- 性质:
P ( A ) ≤ P ( B ) P(A) \leq P(B) P(A)≤P(B)
(2)互斥关系
- 定义:若事件 A A A 与 B B B 不能同时发生,则称 A A A 与 B B B 互斥,即 A B = ∅ AB = \emptyset AB=∅
- 性质:
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B)
结论:零概率事件(概率为零)不等于不可能事件(∅),即零概率事件是可能发生的。
2. 古典概型
核心思想:等可能性与有限性
- 计算公式:
P ( A ) = 事件 A 包含的基本事件数 n A 样本空间 Ω 的基本事件总数 n Ω P(A) = \frac{\text{事件 } A \text{ 包含的基本事件数 } n_A}{\text{样本空间 } \Omega \text{ 的基本事件总数 } n_\Omega} P(A)=样本空间 Ω 的基本事件总数 nΩ事件 A 包含的基本事件数 nA - 解题技巧:
① 穷举法:直接列举所有可能结果
② 分类加法:复杂事件分解为互斥子事件
③ 分步乘法:多步骤事件分步计算概率
3. 几何概型
核心思想:无限样本空间与几何测度
- 计算公式:
P ( A ) = 事件 A 对应的几何测度(长度/面积/体积) 样本空间 Ω 的几何测度 P(A) = \frac{\text{事件 } A \text{ 对应的几何测度(长度/面积/体积)}}{\text{样本空间 } \Omega \text{ 的几何测度}} P(A)=样本空间 Ω 的几何测度事件 A 对应的几何测度(长度/面积/体积) - 典型应用:
时间间隔问题、区域面积问题、体积比例问题
考点二:概率公式与事件独立性
1. 基本概率公式
(1)加法公式
- 一般形式:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A) + P(B) - P(AB) P(A∪B)=P(A)+P(B)−P(AB) - 互斥简化:若 A A A 与 B B B 互斥,则 P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B)
(2)减法公式
- 定义:
P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(A−B)=P(A)−P(AB)
结论: P ( A ‾ B ‾ ) = 1 − P ( A ) − P ( B ) + P ( A B ) P(\overline{A}\overline{B})=1-P(A)-P(B)+P(AB) P(AB)=1−P(A)−P(B)+P(AB) 、 P ( A A ) = P ( A ) P(AA)=P(A) P(AA)=P(A) 、 P ( A ‾ A ) = ∅ P(\overline{A}A)= \emptyset P(AA)=∅
(3)条件概率
- 公式:
P ( A ∣ B ) = P ( A B ) P ( B ) ( P ( B ) > 0 ) P(A|B) = \frac{P(AB)}{P(B)} \quad (P(B) > 0) P(A∣B)=P(B)P(AB)(P(B)>0) - 性质:
① 条件概率也是概率,满足概率公理化定义
② P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A C ∣ B ) P(A \cup C | B) = P(A|B) + P(C|B) - P(AC|B) P(A∪C∣B)=P(A∣B)+P(C∣B)−P(AC∣B)
(4)乘法公式
- 链式法则:
P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB) =P(B|A) P(A) = P(A|B)P(B) P(AB)=P(B∣A)P(A)=P(A∣B)P(B) - 多事件扩展:
P ( A B C ) = P ( A ∣ B C ) P ( B ∣ C ) P ( C ∣ ) P(ABC) = P(A|BC)P(B|C)P(C|) P(ABC)=P(A∣BC)P(B∣C)P(C∣)
2. 全概率公式与贝叶斯公式
-
全概率公式(分解样本空间):
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum_{i=1}^n P(A_i)P(B|A_i) P(B)=i=1∑nP(Ai)P(B∣Ai)
其中 { A i } \{A_i\} {Ai} 构成完备事件组(即 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega ⋃i=1nAi=Ω 且 A i A j = ∅ A_iA_j = \emptyset AiAj=∅) -
贝叶斯公式(逆概率公式):
P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^n P(A_i)P(B|A_i)} P(Aj∣B)=∑i=1nP(Ai)P(B∣Ai)P(Aj)P(B∣Aj)
3. 事件独立性
(1)独立性定义
- 两事件独立:
P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B) - 条件独立:
P ( A B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(AB|C) = P(A|C)P(B|C) P(AB∣C)=P(A∣C)P(B∣C)
(2)独立性等价条件
- 若
0
<
P
(
A
)
<
1
0 < P(A) < 1
0<P(A)<1,则以下等价:
A A A 与 B B B 独立
P ( B ∣ A ) = P ( B ) P(B|A) = P(B) P(B∣A)=P(B)
P ( B ∣ A ‾ ) = P ( B ) P(B|\overline{A})=P(B) P(B∣A)=P(B)
P ( B ∣ A ) = P ( B ∣ A ‾ ) P(B|A) = P(B|\overline{A}) P(B∣A)=P(B∣A)
(3)多事件独立性
-
两两独立:满足
{ P ( A B ) = P ( A ) P ( B ) P ( A C ) = P ( A ) P ( C ) P ( B C ) = P ( B ) P ( C ) \begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \end{cases} ⎩ ⎨ ⎧P(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C) -
相互独立:需满足
{ P ( A B ) = P ( A ) P ( B ) P ( A C ) = P ( A ) P ( C ) P ( B C ) = P ( B ) P ( C ) P ( A B C ) = P ( A ) P ( B ) P ( C ) \begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases} ⎩ ⎨ ⎧P(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)P(ABC)=P(A)P(B)P(C)
注:多事件独立中:两两独立不意味着相互独立!
注:三个事件独立,则这三个事件中任意两个事件的积、和、差、逆 与 第三事件(或者它的逆)也独立
总结
本章重点掌握:
- 事件关系的判定与概型计算的核心方法
- 全概率公式与贝叶斯公式的应用场景
- 独立性的多角度验证与两两/相互独立的本质区别
建议结合真题训练,强化对复杂事件链式分解与独立性条件的分析能力。