3.1 事件与概率

考研数学一《概率论与数理统计》第一章 事件与概率

本章围绕事件关系、概率计算与独立性展开,是概率论的基础核心内容。以下从两大核心考点系统梳理知识体系:


考点一:事件关系与概型计算

1. 事件关系

(1)包含关系
  • 定义:若事件 A A A 发生必然导致事件 B B B 发生,则称 A A A 包含于 B B B,记作 A ⊂ B A \subset B AB
  • 性质
    P ( A ) ≤ P ( B ) P(A) \leq P(B) P(A)P(B)
(2)互斥关系
  • 定义:若事件 A A A B B B 不能同时发生,则称 A A A B B B 互斥,即 A B = ∅ AB = \emptyset AB=
  • 性质
    P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B)

结论:零概率事件(概率为零)不等于不可能事件(∅),即零概率事件是可能发生的。

2. 古典概型

核心思想:等可能性有限性
  • 计算公式
    P ( A ) = 事件  A  包含的基本事件数  n A 样本空间  Ω  的基本事件总数  n Ω P(A) = \frac{\text{事件 } A \text{ 包含的基本事件数 } n_A}{\text{样本空间 } \Omega \text{ 的基本事件总数 } n_\Omega} P(A)=样本空间 Ω 的基本事件总数 nΩ事件 A 包含的基本事件数 nA
  • 解题技巧
    穷举法:直接列举所有可能结果
    分类加法:复杂事件分解为互斥子事件
    分步乘法:多步骤事件分步计算概率

3. 几何概型

核心思想:无限样本空间几何测度
  • 计算公式
    P ( A ) = 事件  A  对应的几何测度(长度/面积/体积) 样本空间  Ω  的几何测度 P(A) = \frac{\text{事件 } A \text{ 对应的几何测度(长度/面积/体积)}}{\text{样本空间 } \Omega \text{ 的几何测度}} P(A)=样本空间 Ω 的几何测度事件 A 对应的几何测度(长度/面积/体积)
  • 典型应用
    时间间隔问题、区域面积问题、体积比例问题

考点二:概率公式与事件独立性

1. 基本概率公式

(1)加法公式
  • 一般形式
    P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A) + P(B) - P(AB) P(AB)=P(A)+P(B)P(AB)
  • 互斥简化:若 A A A B B B 互斥,则 P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B)
(2)减法公式
  • 定义
    P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(AB)=P(A)P(AB)

结论: P ( A ‾ B ‾ ) = 1 − P ( A ) − P ( B ) + P ( A B ) P(\overline{A}\overline{B})=1-P(A)-P(B)+P(AB) P(AB)=1P(A)P(B)+P(AB) P ( A A ) = P ( A ) P(AA)=P(A) P(AA)=P(A) P ( A ‾ A ) = ∅ P(\overline{A}A)= \emptyset P(AA)=

(3)条件概率
  • 公式
    P ( A ∣ B ) = P ( A B ) P ( B ) ( P ( B ) > 0 ) P(A|B) = \frac{P(AB)}{P(B)} \quad (P(B) > 0) P(AB)=P(B)P(AB)(P(B)>0)
  • 性质
    ① 条件概率也是概率,满足概率公理化定义
    P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A C ∣ B ) P(A \cup C | B) = P(A|B) + P(C|B) - P(AC|B) P(ACB)=P(AB)+P(CB)P(ACB)
(4)乘法公式
  • 链式法则
    P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB) =P(B|A) P(A) = P(A|B)P(B) P(AB)=P(BA)P(A)=P(AB)P(B)
  • 多事件扩展
    P ( A B C ) = P ( A ∣ B C ) P ( B ∣ C ) P ( C ∣ ) P(ABC) = P(A|BC)P(B|C)P(C|) P(ABC)=P(ABC)P(BC)P(C)

2. 全概率公式与贝叶斯公式

  • 全概率公式(分解样本空间):
    P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum_{i=1}^n P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)
    其中 { A i } \{A_i\} {Ai} 构成完备事件组(即 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega i=1nAi=Ω A i A j = ∅ A_iA_j = \emptyset AiAj=

  • 贝叶斯公式(逆概率公式):
    P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^n P(A_i)P(B|A_i)} P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)

3. 事件独立性

(1)独立性定义
  • 两事件独立
    P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)
  • 条件独立
    P ( A B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(AB|C) = P(A|C)P(B|C) P(ABC)=P(AC)P(BC)
(2)独立性等价条件
  • 0 < P ( A ) < 1 0 < P(A) < 1 0<P(A)<1,则以下等价:
    A A A B B B 独立
    P ( B ∣ A ) = P ( B ) P(B|A) = P(B) P(BA)=P(B)
    P ( B ∣ A ‾ ) = P ( B ) P(B|\overline{A})=P(B) P(BA)=P(B)
    P ( B ∣ A ) = P ( B ∣ A ‾ ) P(B|A) = P(B|\overline{A}) P(BA)=P(BA)
(3)多事件独立性
  • 两两独立:满足
    { P ( A B ) = P ( A ) P ( B ) P ( A C ) = P ( A ) P ( C ) P ( B C ) = P ( B ) P ( C ) \begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \end{cases} P(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)

  • 相互独立:需满足
    { P ( A B ) = P ( A ) P ( B ) P ( A C ) = P ( A ) P ( C ) P ( B C ) = P ( B ) P ( C ) P ( A B C ) = P ( A ) P ( B ) P ( C ) \begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases} P(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)P(ABC)=P(A)P(B)P(C)

多事件独立中:两两独立不意味着相互独立!
三个事件独立,则这三个事件中任意两个事件的积、和、差、逆 与 第三事件(或者它的逆)也独立


总结

本章重点掌握:

  1. 事件关系的判定与概型计算的核心方法
  2. 全概率公式贝叶斯公式的应用场景
  3. 独立性的多角度验证与两两/相互独立的本质区别
    建议结合真题训练,强化对复杂事件链式分解与独立性条件的分析能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值