- 博客(24)
- 收藏
- 关注
原创 【论文精读(十五)】Point Transformer: 当 Vector Attention 遇上 U-Net,语义分割的“正统”王者 (ICCV 2021)
2021年ICCV的里程碑工作Point Transformer(PT),其创新性体现在:1)采用局部k-NN注意力机制替代传统Transformer的全局计算,显著降低O(N²)复杂度;2)提出向量注意力(Vector Attention)实现通道级精细权重分配,结合特征减法运算编码相对关系;3)通过U-Net架构堆叠多层局部Transformer,逐步扩大感受野。实验表明,该方法在S3DIS等语义分割任务上性能优越
2025-12-29 21:59:42
636
原创 【论文精读(十四)】PCT:当 Transformer 遇上拉普拉斯算子,用“减法”锐化点云特征 (CVM 2021)
**摘要:清华大学团队提出的PCT(Point Cloud Transformer)创新性地解决了点云处理中Transformer的"过度平滑"问题。通过引入Offset-Attention机制,将标准Self-Attention的加权平均(低通滤波)转变为"输入-Attention"的减法操作(高通滤波),有效保留了点云的几何边缘特征。PCT还结合坐标嵌入、双重归一化和邻域嵌入等技术,在保持Transformer全局建模优势的同时增强局部细节提取能力。
2025-12-29 21:19:30
552
原创 【论文精读(十三)】点云中卷积的“诸神之战”——大总结
本文系统总结了点云卷积领域的六大里程碑方法:PointCNN通过X变换矩阵重排无序点云;PointConv用MLP拟合连续权重函数;RSCNN基于几何关系生成卷积权重;PAConv采用动态核组装提升效率;KPConv利用空间锚点实现稳定卷积;KPConvX则通过深度可分离卷积和几何注意力机制实现现代化改造。这些方法的核心挑战在于处理点云的无序性、非均匀性和非结构化特性。横向对比显示,KPConvX在速度和精度上取得最佳平衡,证明了显式几何结构在点云处理中的重要性。点云卷积的发展历程体现了从强行排序到几何注意
2025-12-27 00:00:26
1653
原创 【论文精读(十二)】KPConvX:当经典卷积装上“几何倍镜”,老将重回 SOTA 巅峰 (CVPR 2024)
KPConvX:经典卷积的几何复兴(CVPR 2024) 本文介绍了一种革新性的点云处理方法KPConvX,它通过三步现代化改造让传统3D卷积重获新生:(1)采用深度可分离卷积(KPConvD)实现"瘦身",参数减少80%;(2)引入基于几何的动态核注意力机制,实现"几何眼观六路";(3)适配现代架构如倒瓶颈结构。实验证明,KPConvX在ScanNetv2上以76.3%mIoU刷新SOTA,同时推理速度提升35%,显存消耗减半。这项工作启示我们:显式几何结构在点云处
2025-12-26 00:57:49
1074
原创 【论文精读(十一)】KPConv:用“核点触角”重新定义点云卷积 (ICCV 2019)
KPConv: 灵活可变的点云卷积方法 本文提出了一种新颖的点云卷积方法KPConv,通过引入"核点"(Kernel Points)概念,解决了传统卷积在点云处理中的局限性。KPConv在3D空间中部署一组可学习的核点作为权重载体,根据输入点与核点的相对距离进行特征聚合。该方法还提出了可变形版本(Deformable KPConv),允许核点根据物体形状自适应调整位置。为确保变形核点的有效性,作者设计了拟合损失和排斥损失两个正则化项。实验表明,基于U-Net架构的KP-FCNN在点云分割
2025-12-26 00:02:24
1007
原创 【论文精读(九)】PAConv:拒绝暴力预测!用“积木拼装”重塑点云卷积 (CVPR 2021)
PAConv提出了一种创新的点云卷积方法,通过动态组装预定义的权重基来构建卷积核。该方法解决了传统点云卷积计算量大或灵活性不足的问题。核心思想包括:1)构建权重库作为基础卷积核组件;2)使用轻量级ScoreNet预测位置相关的组合系数;3)通过Softmax归一化和相关性正则化确保权重多样性。这种"预制菜+动态配方"的方式显著降低了计算成本,同时保持了位置适应性。实验表明PAConv可即插即用替换多种点云网络中的卷积模块,性能优于现有方法。该工作为点云处理提供了高效灵活的新思路。
2025-12-25 18:41:30
957
原创 【论文精读(八)】RS-CNN:卷积核权重也能算出来?揭秘“从关系中学习”的几何推理 (CVPR 2019)
本文将深度拆解 RS-CNN 的核心算子 RS-Conv,揭秘它是如何通过 "从关系中学习" (Learning from Relation) —— 即利用点与点之间的几何先验 (Geometric Priors,如距离、方位) —— 来动态生成卷积权重的。我们将从原理推导到 PyTorch 代码复现,全方位剖析它是如何通过显式的几何推理,在仅使用 XYZ 坐标的情况下,于 ModelNet40 上一举达到 93.6% 的 SOTA 性能,并像传统 CNN 一样逐层理解从边缘到语义部件的 3D 形状。
2025-12-25 18:41:08
514
原创 【源码解析(五)】PointNeXt 官方框架详解:解构 OpenPoints “流水线工厂”
本文深入解析了PointNeXt官方框架OpenPoints的模块化设计,将其比作"流水线工厂"并拆解为4个核心板块:1)仓库根目录展示执行路径;2)cfgs参数声明层通过YAML配置实验;3)examples作为程序入口处理参数解析和训练调度;4)openpoints核心实现层包含数据工厂、增强变换、模型定义和损失计算。文章重点揭示了数据流执行顺序:从CPU端的transform预处理到GPU端的模型前向计算,特别指出GridSample是在CPU端完成的邻域索引计算而非网络层。最后提
2025-12-24 22:36:20
579
原创 【源码解析(四)】Pointcept 逐文件精讲 and 全景导游
Pointcept框架核心解析与实战指南 本文深入解析Pointcept框架的核心模块与使用技巧。主要内容包括: 配置文件系统:详细解读configs文件夹中基础运行时配置与模型专用配置的继承关系 数据管理:揭示IDE卡死问题的根源(数据集软链接索引问题)并提供解决方案 实验管理:分享日志保存频率优化建议和统一日志格式的重要性 核心算子库:对比分析pointops和pointops2两代算子的区别与适用场景 注册器机制:详细拆解框架如何通过Registry实现从配置到对象的动态转换 训练控制:解析engin
2025-12-24 16:55:50
744
原创 【保姆级教程】PyCharm 连接远程服务器调试 Deep Learning 代码:从环境配置到避坑指南
本文详细介绍了PyCharm连接远程服务器调试深度学习代码的完整流程。核心原理是将本地代码与远程环境结合,通过路径映射实现调试功能。文章提供了三步配置指南:1)配置远程解释器选择服务器Conda环境;2)设置部署映射确保本地与服务器代码同步;3)建立运行配置指定服务器路径。重点解决了两个常见问题:文件路径错误和模块导入失败,并给出了具体解决方案。最后强调了调试的正确方法:在本地代码打断点,通过远程环境执行。全文通过清晰的步骤说明和实用技巧,帮助开发者高效实现PyCharm远程调试。
2025-12-23 12:40:23
1078
原创 【论文精读(七)】PointConv:当点云遇上蒙特卡洛积分 (CVPR 2019)
PointConv:基于蒙特卡洛积分的3D点云卷积方法 摘要: 本文介绍CVPR 2019提出的PointConv方法,它通过蒙特卡洛积分和逆密度加权创新性地解决了点云卷积的两个核心难题:1)非均匀采样导致特征提取偏差;2)连续空间中的卷积操作定义问题。该方法将卷积视为连续函数积分,利用MLP动态生成权重函数和逆密度尺度,并通过矩阵分解技巧将显存消耗降低64倍。实验表明,PointConv不仅能有效处理3D点云,在CIFAR-10等2D图像任务上也展现出与常规CNN相当的性能。文章还详细解析了网络架构和高效
2025-12-20 00:16:15
722
原创 【源码解析(三)】Pointcept 框架详解:实例解析,魔改教程
本文深入解析了Pointcept框架中的两个关键问题:测试阶段"Random"变换的作用和日志打印优化。首先解释了Test-Time Augmentation(TTA)机制,说明测试时的随机变换实际上是预设的多角度/多尺度变换,通过投票机制提高预测精度。随后详细介绍了如何通过修改源码中的InformationWriter类,添加interval参数来控制训练日志的打印频率,避免终端信息过载。文章还指出验证集日志需要单独修改评估器代码。这些优化方案能帮助用户更好地理解和使用Pointcep
2025-12-19 22:05:45
954
原创 【论文精读(六)】PointCNN:点云也能用卷积?揭秘神奇的 X-Transformation (NeurIPS 2018)
PointCNN提出了一种创新的点云卷积方法,通过X变换解决点云无序性问题。传统CNN无法直接应用于不规则、无序的点云数据。PointCNN的核心是X-Conv算子,它通过学习一个K×K的变换矩阵,将无序邻居点重新排列为潜在规范顺序,从而支持标准卷积操作。该方法首先对局部坐标进行变换,通过MLP生成X矩阵,对特征进行加权和重排,最后应用标准卷积。网络采用层级结构,包含编码器、空洞卷积和解码器,模仿传统CNN的层次化特征提取。X矩阵作为"软置换矩阵",通过基于内容的加权实现置换不变性,使卷
2025-12-18 23:04:03
770
原创 【论文精读(五)】DGCNN:让点云“动”起来,动态图卷积神经网络 (TOG 2019)
DGCNN创新性地提出EdgeConv模块和动态图机制,解决了传统点云处理中忽视局部结构和固定图结构的缺陷。通过动态更新k近邻图,网络能够在特征空间中自动捕捉语义相似性,将物理距离远但语义相关的点(如飞机机翼)关联起来。核心实现包括:1)在特征空间动态计算k-NN图;2)使用EdgeConv同时处理点特征和边特征;3)多层特征拼接保留几何和语义信息。该方法显著提升了点云分类和分割任务的性能,成为该领域的里程碑工作。
2025-12-18 00:00:36
740
原创 【源码解析(二)】Pointcept 框架详解:实例解析,魔改教程
本文详细介绍了如何在Pointcept框架中实现自定义数据增强。首先分析了框架的配置驱动原理,通过实例说明如何将命令行参数转化为Python对象。重点讲解了如何添加随机旋转数据增强类,包括在transform.py中实现RandomRotate类,使用NumPy计算旋转矩阵,并处理坐标变换。文章还提供了配置修改建议和常见错误排查方法,帮助开发者避免类型冲突等问题。通过遵循Pointcept的设计规范,开发者可以灵活扩展数据增强功能。
2025-12-17 22:56:44
538
原创 【源码解析(一)】Pointcept 框架详解:从 Config 到 Runner 的全流程执行机制
Pointcept 是一个点云处理框架,采用配置驱动和注册机制设计模式。其目录结构清晰解耦,核心代码位于 pointcept/ 文件夹,包含数据集、模型、训练引擎等模块。配置文件采用继承机制,通过 default_runtime.py 提供基础参数,用户只需修改必要参数即可。框架支持分布式训练、混合精度等特性,并提供自动化代码检查工作流。该框架是 Point Transformer V3 的官方实现,适用于多种点云任务如语义分割、实例分割等。
2025-12-15 22:23:18
731
原创 【论文精读(四)】PointNeXt:PointNet++ 的文艺复兴,这才是 SOTA 该有的样子 (NeurIPS 2022)
PointNeXt 是一篇典型的**“Revisiting(重访)”**类论文。1. 拒绝盲目创新 (Stop Reinventing the Wheel)有时候,经典的 Baseline(如 PointNet++)并没有过时,只是我们没有给它配备现代化的“武器”(训练策略)。2. 架构设计通式 (Unified Architecture)PointNeXt 证明了这个组合,不仅在 CV (ConvNeXt) 有效,在 NLP (Transformer) 有效,在 3D 点云也同样有效。
2025-12-14 19:55:03
828
原创 论文精读(三)Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual ML (ICLR 2022)
PointMLP 的出现是对点云深度学习领域的一次“降维打击”。1. 基础被低估了 (Don’t overlook the basics)在大家都在追求复杂的图卷积和 Transformer 时,作者回头重新审视了 MLP。有时候,复杂的不是任务,而是我们设计的模型。2. 几何归一化是关键 (Geometry matters)MLP 并不是不能处理点云,而是需要合适的归一化 (Normalization)。
2025-12-14 19:36:09
1222
原创 论文精读(二)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NeurIPS 2017)
PointNet++ 的 Encoder 部分由多个串联而成。采样 (Sampling)分组 (Grouping)特征提取 (PointNet)。PointNet++ 完美地弥补了 PointNet 的短板,它提出的这一套组合拳(Set Abstraction),成为了后来无数 3D 网络(如 PointConv, PointCNN, SpiderCNN)的模仿对象。如果把 PointNet 比作 MLP,那么PointNet++ 就是 CNN。
2025-12-13 23:07:12
625
原创 论文精读(一)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR 2017)
PointNet 的鲁棒性不是偶然的,而是由 Max Pooling 的机制从数学上保证的。它就像一个精明的画家,只画骨骼(关键点,对全局特征有帮助的点),而忽略那些无关紧要的填充和杂质(噪声)。
2025-12-13 22:34:15
766
原创 跟李沐学AI——动手学深度学习 PyTorch版——学习笔记pycharm版本(第四天——10、11、12、13、14)2023.3.1
这是沐神的第十节课。是讲多层感知机的,需要掌握牢固。以后会经常写的。
2023-03-01 21:39:37
740
2
原创 跟李沐学AI——动手学深度学习 PyTorch版——学习笔记pycharm版本(第三天——08-09)2023.2.28
我认为,沐神的第七节课和第八节课十分的重要,是后面的基础。一定要掌握牢固了。先处理几个问题:1、图片不显示的问题因为沐神使用的是jupyter,而我使用的是pycharm,所以在原本的d2l.plt…后面需要添加一行代码,比如或者在 调用d2l的时候,后面添加d2l.plt.show()解决办法是,下载d2l包d2l包里面包含这几个文件,沐神的GitHub里面3、多线程的问题。
2023-02-27 21:29:49
1438
1
原创 跟李沐学AI——动手学深度学习 PyTorch版——学习笔记pycharm版本(第二天——04-08)2023.2.27
沐神的讲到了基本数据操作
2023-02-26 20:48:40
1016
2
原创 跟李沐学AI——动手学深度学习 PyTorch版——学习笔记pycharm版本(第一天——00-03)2023.2.26
跟李沐学AI——动手学深度学习 PyTorch版——学习笔记pycharm版本前言+第一天
2023-02-26 19:40:21
1837
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅