传输线理论
文章目录
3.5 均匀无耗传输线的传输功率与回波损耗
(…)
3.5.1 传输功率
(…)
3.5.2 回波损耗和插入损耗
(…)
3.6 均匀有耗传输线的特性
(…)
3.6.1 线上电压、电流和传输功率
(…)
3.6.2 特性阻抗和传播常数的试验确定
(…)
3.7 圆图(史密斯圆图Smith)
由于在实际的射频/微波技术与天线工程中常遇到阻抗的计算问题,但由于通过公式直接计算的过程比较繁琐,因此引入图解法(即圆图)这种简便的阻抗等参量的计算方法。
3.7.1 阻抗圆图
阻抗圆图由等反射系数圆族、等归一化电阻圆族和等归一化电抗圆族构成。
1 等反射系数圆族
在无耗传输线上,电压反射系数
Γ
(
z
′
)
\Gamma(z')
Γ(z′) 一般为复数,可用复平面上点的坐标表示。传输线上观察点
z
′
z'
z′ 处的电压发射系数可表示为
Γ
=
Γ
(
z
′
)
=
Γ
u
+
j
Γ
v
e
−
j
2
β
z
′
=
∣
Γ
l
∣
e
j
(
φ
l
−
2
β
z
′
)
=
∣
Γ
l
∣
e
j
θ
=
Γ
u
+
j
Γ
v
(3.114a)
\Gamma=\Gamma(z')=\Gamma_u+j\Gamma_ve^{-j2\beta z'}=|\Gamma_l| e^{j(\varphi_l-2\beta z')}= |\Gamma_l|e^{j\theta}=\Gamma_u+j\Gamma_v \tag{3.114a}
Γ=Γ(z′)=Γu+jΓve−j2βz′=∣Γl∣ej(φl−2βz′)=∣Γl∣ejθ=Γu+jΓv(3.114a)
或
Γ
u
2
+
Γ
v
2
=
∣
Γ
∣
2
(3.114b)
\Gamma_u^2+\Gamma_v^2=|\Gamma|^2\tag{3.114b}
Γu2+Γv2=∣Γ∣2(3.114b)
由此可见,无耗传输线的反射系数模值是一个圆的方程,以原点为圆心,
∣
Γ
l
∣
|\Gamma_l|
∣Γl∣ 为半径,而当无耗传输线接不同终端负载时,就产生了不同半径的同心圆。
图中,各部分的意义分别为:
- ∣ Γ ∣ |\Gamma| ∣Γ∣ 表示反射系数,对于无耗传输线上沿线不同位置,其反射系数的模值不发生改变; ∣ Γ ∣ = 1 |\Gamma|=1 ∣Γ∣=1 时表示传输线全反射; ∣ Γ ∣ = 0 |\Gamma|=0 ∣Γ∣=0 时,此时对应于原点,表示负载匹配,故该点也称匹配点;
- ρ \rho ρ 表示驻波系数,由于驻波系数与反射系数一一对应,故等反射系数圆也代表等驻波系数圆;
- θ \theta θ 为单位圆外圈标记的角度 [ 0 ∘ , 36 0 ∘ ] [0^{\circ},360^{\circ}] [0∘,360∘],表示电压反射系数 Γ \Gamma Γ 的辐角,对于无耗传输线上沿线不同位置,其反射系数的模值不变,改变的是辐角 θ \theta θ ;
- 电长度为单位圆外圈标记的小数 [ 0 , 0.5 ] [0,0.5] [0,0.5] ,用来表示 β z ′ \beta z' βz′ 的大小,无耗传输线上两点的距离可以用该数值乘上传输线上波频率对应的波长进行表示;由图中可知一圈为半个波长,刚好对应传输线的半波长阻抗重复性;
- 开路点:单位圆与正实轴的交点,
- 短路点:单位圆与负实轴的交点,
2 等归一化阻抗圆族
根据式(3.58b),可知定义无耗传输线上任意一点
z
′
z'
z′ 处的归一化阻抗为
z
=
Z
Z
c
=
1
+
Γ
1
−
Γ
(3.115)
z=\frac{Z}{Z_c}=\frac{1+\Gamma}{1-\Gamma}\tag{3.115}
z=ZcZ=1−Γ1+Γ(3.115)
将式(3.114a)代入上式,得
z
=
1
+
(
Γ
u
+
j
Γ
v
)
1
−
(
Γ
u
+
j
Γ
v
)
=
1
−
(
Γ
u
2
+
Γ
v
2
)
(
1
−
Γ
u
)
2
+
Γ
v
2
+
j
2
Γ
v
(
1
−
Γ
u
)
2
+
Γ
v
2
=
r
+
j
x
z=\frac{1+(\Gamma_u+j\Gamma_v)}{1-(\Gamma_u+j\Gamma_v)}= \frac{1-(\Gamma_u^2+\Gamma_v^2)}{(1-\Gamma_u)^2+\Gamma_v^2}+ j\frac{2\Gamma_v}{(1-\Gamma_u)^2+\Gamma_v^2}= r+jx
z=1−(Γu+jΓv)1+(Γu+jΓv)=(1−Γu)2+Γv21−(Γu2+Γv2)+j(1−Γu)2+Γv22Γv=r+jx
式中,
r
=
1
−
(
Γ
u
2
+
Γ
v
2
)
(
1
−
Γ
u
)
2
+
Γ
v
2
,
x
=
2
Γ
v
(
1
−
Γ
u
)
2
+
Γ
v
2
(3.116)
r=\frac{1-(\Gamma_u^2+\Gamma_v^2)}{(1-\Gamma_u)^2+\Gamma_v^2},\hspace{2em} x=\frac{2\Gamma_v}{(1-\Gamma_u)^2+\Gamma_v^2}\tag{3.116}
r=(1−Γu)2+Γv21−(Γu2+Γv2),x=(1−Γu)2+Γv22Γv(3.116)
r
r
r 是归一化电阻,因
Γ
u
2
+
Γ
v
2
=
∣
Γ
∣
2
≤
1
\Gamma_u^2+\Gamma_v^2=|\Gamma|^2\le1
Γu2+Γv2=∣Γ∣2≤1,故
r
≥
0
r\ge0
r≥0 ;
x
x
x 是归一化电抗,因
Γ
v
\Gamma_v
Γv 可取正值或负值,故
x
x
x 可正可负。同时将式(3.116)整理可得
(
Γ
u
−
r
1
+
r
)
2
+
Γ
v
2
=
(
1
1
+
r
)
2
(3.117a)
(\Gamma_u-\frac{r}{1+r})^2+\Gamma_v^2=(\frac{1}{1+r})^2\tag{3.117a}
(Γu−1+rr)2+Γv2=(1+r1)2(3.117a)
( Γ u − 1 ) 2 + ( Γ v − 1 x ) 2 = ( 1 x ) 2 (3.117b) (\Gamma_u-1)^2+(\Gamma_v-\frac1x)^2=(\frac{1}{x})^2\tag{3.117b} (Γu−1)2+(Γv−x1)2=(x1)2(3.117b)
显然可以看出,这两个方程均为圆的方程,其中归一化电阻圆,圆心为 ( r 1 + r , 0 ) (\frac{r}{1+r},0) (1+rr,0) ,半径为 1 1 + r \frac{1}{1+r} 1+r1 ,且必过 ( 1 , 0 ) (1,0) (1,0) 点;其中归一化电抗圆,圆心为 ( 1 , 1 x ) (1,\frac1x) (1,x1) ,半径为 1 x \frac1x x1 ,且必过 ( 1 , 0 ) (1,0) (1,0) 点。
3 史密斯圆图
将上述等反射系数圆、等归一化电阻圆等归一化电抗圆重叠在一起,就构成了一个完整的阻抗圆图。
对阻抗圆图构成进行分析,可以得到以下结论:
- 圆图中心点:对应于 Γ = 0 , x = 0 , r = 1 ( Z l = Z c ) , ρ = 1 \Gamma=0,x=0,r=1(Z_l=Z_c),\rho=1 Γ=0,x=0,r=1(Zl=Zc),ρ=1 ,是匹配点;
- 实轴上(两端点除外)表示纯归一化电阻,当 x = 0 x=0 x=0 时,等电抗圆的半径为 ∞ \infty ∞ ,等电抗圆退化成实轴;
- 实轴左端点对应于 Γ = − 1 , z = 0 \Gamma=-1,z=0 Γ=−1,z=0 , 故该点为短路点;
- 实轴右端点对应于 Γ = 1 , z = ∞ \Gamma=1,z=\infty Γ=1,z=∞ ,故该点为开路点;
- 圆图中的单位圆对应于 Γ = 1. r = 0. z = j x \Gamma=1.r=0.z=jx Γ=1.r=0.z=jx ,故该圆是纯归一化电抗圆。实轴以上的等 x x x 圆曲线对应于 x > 0 x>0 x>0 ,表示感性复阻抗的归一化值;实轴以下的等 x x x 圆曲线对应于 x < 0 x<0 x<0 ,表示容性复阻抗的归一化值;
- 右半实轴上的点对应于传输线上电压的同相位点,故是电压波腹点(电流波节点), r r r 的值即为电压驻波系数 ρ \rho ρ 的值;左半实轴上的点对应于传输线上电流的同相位点,故是电流波腹点(电压波节点), r r r 的值即为电压驻波系数 ρ \rho ρ 的值的倒数;
注:顺源逆载,圆图最外圈上标有电刻度,圈外刻度按顺时针方向增加,用箭头示出向波源方向;圈内刻度按逆时针方向增加,用箭头示出向负载方向。
3.7.2 导纳圆图
(…)
3.8 传输线的阻抗匹配
通过上面的内容我们已经清楚传输线的传输特性,既然是传输线我们就要尽可能的将所有波源的信号传输到负载上去,即使反射的信号越少越好,这就需要进行阻抗匹配。
3.8.1 阻抗匹配的概念
阻抗匹配是射频/微波技术与天线工程中经常遇到的问题。对如图3.24(a)所示的无耗传输线系统,设波源的内阻抗
Z
g
=
R
g
+
j
X
g
Z_g=R_g+jX_g
Zg=Rg+jXg,传输线的输入阻抗
Z
i
n
=
R
i
n
+
j
X
i
n
Z_{in}=R_{in}+jX_{in}
Zin=Rin+jXin ,则传输线到负载上的功率
P
l
P_l
Pl 可表示为
P
l
=
Re
[
1
2
U
l
+
I
l
∗
]
=
1
2
∣
E
g
∣
2
∣
Z
i
n
Z
i
n
+
Z
g
∣
2
Re
[
1
Z
i
n
]
=
1
2
∣
E
g
∣
2
R
i
n
(
R
i
n
+
R
g
)
2
+
(
X
i
n
+
X
g
)
2
(3.121)
P_l=\text{Re}[\frac12 U_l+I_l^*]=\frac12|E_g|^2|\frac{Z_{in}}{Z_{in}+Z_g}|^2 \text{Re}[\frac{1}{Z_{in}}]=\frac12|E_g|^2 \frac{R_{in}}{(R_{in}+R_g)^2+(X_{in}+X_g)^2}\tag{3.121}
Pl=Re[21Ul+Il∗]=21∣Eg∣2∣Zin+ZgZin∣2Re[Zin1]=21∣Eg∣2(Rin+Rg)2+(Xin+Xg)2Rin(3.121)
由此可见,波源的内阻抗一定,
P
l
P_l
Pl 随输入阻抗
Z
i
n
Z_{in}
Zin 的改变而改变。当且仅当负载阻抗
Z
l
Z_{l}
Zl 等于传输线的特性阻抗
Z
c
Z_c
Zc 时,
Z
i
n
=
Z
c
Z_{in}=Z_c
Zin=Zc , 此时传输线达到负载无反射的传输条件,波源输出的功率全部被负载吸收。于是,由式(3.121)可得
P
l
∣
Z
l
=
Z
c
=
1
2
∣
E
g
∣
2
Z
c
(
Z
c
+
R
g
)
2
+
X
g
2
(3.122)
P_l|_{Z_l=Z_c}=\frac12|E_g|^2\frac{Z_c}{(Z_c+R_g)^2+X_g^2}\tag{3.122}
Pl∣Zl=Zc=21∣Eg∣2(Zc+Rg)2+Xg2Zc(3.122)
而当传输线的特性阻抗
Z
c
Z_c
Zc 等于波源的内阻抗
Z
g
Z_g
Zg 时,此时传输线达到波源无反射的条件,由负载反射引起的反射波到达波源时被波源的内阻所吸收不会因此二次反射。
同时,由式(3.121)可知,若改变传输线的输入电抗
X
i
n
=
−
X
g
X_{in}=-X_g
Xin=−Xg ,则负载的吸收功率为
P
l
∣
X
i
n
=
−
X
g
=
1
2
∣
E
g
∣
2
R
i
n
(
R
i
n
+
R
g
)
2
(3.123)
P_l|_{X_{in}=-X_g} = \frac12 |E_g|^2 \frac{R_{in}}{(R_{in}+R_g)^2}\tag{3.123}
Pl∣Xin=−Xg=21∣Eg∣2(Rin+Rg)2Rin(3.123)
若在上式中改变输入电阻
R
i
n
R_{in}
Rin ,使
∂
P
l
∂
R
i
n
=
0
\frac{\partial P_l}{\partial R_{in}}=0
∂Rin∂Pl=0,则获得最大功率传输条件:
R
i
n
=
R
g
R_{in}=R_g
Rin=Rg。这表明,当传输线的输入阻抗
Z
i
n
Z_{in}
Zin 等于波源内阻抗的复共轭,
Z
i
n
=
Z
g
∗
Z_{in}=Z_g^*
Zin=Zg∗ 时,波源有最大输出功率,此时
(
P
l
)
m
a
x
=
∣
E
g
∣
2
8
R
g
(3.124)
(P_l)_{max}=\frac{|E_g|^2}{8R_g}\tag{3.124}
(Pl)max=8Rg∣Eg∣2(3.124)
如上我们已经简单讨论了关于波源如何有最大输出功率以及负载如何有最大输入功率。在实际工程中,波源匹配通常在传输线和波源之间加入衰减器和隔离器(又称单向器,是一种非互易性的铁氧体器件)等简单的方法实现。其中,对于负载获得最大输入功率的条件就是负载阻抗等于传输线的输入阻抗,然而在实际工程中,显然这是很难达到的,由此引入另外两种实现负载与传输线阻抗匹配的两种方法, λ \lambda λ/4 阻抗变换器和支节调配器。
3.8.2 λ \lambda λ/4 阻抗变换器
若主传输线(无耗传输线)的特性阻抗为 Z c Z_c Zc ,负载为纯电阻,且其满足 Z l = R l ≠ Z c Z_l=R_l\neq Z_c Zl=Rl=Zc,此时可在主传输线和负载之间接入一段特性阻抗为 Z c 1 Z_{c1} Zc1 ,长度为 λ / 4 \lambda/4 λ/4 的无耗传输线,如图 3.25 所示,这样就构成了 λ / 4 \lambda/4 λ/4 阻抗变换器。
由图及 式(3.51)可知,AA‘ 处的输入阻抗
Z
i
n
Z_{in}
Zin 为
Z
i
n
=
Z
c
1
2
R
l
(3.125)
Z_{in}=\frac{Z_{c1}^2}{R_l}\tag{3.125}
Zin=RlZc12(3.125)
若使 AA’ 左边传输线上没有反射波。则应使
Z
i
n
=
Z
c
Z_{in}=Z_c
Zin=Zc ,即满足
Z
c
1
=
Z
c
R
l
(3.126)
Z_{c1}=\sqrt{Z_cR_l}\tag{3.126}
Zc1=ZcRl(3.126)
当负载阻抗
Z
l
Z_l
Zl 不是纯电阻时,此时需要将
λ
\lambda
λ/4 阻抗变换器接在离负载较近的电压波节点或波腹点处,由图3.13 可知从此处向负载看去的输入阻抗仍为纯电阻。通常将它接在第一个波节点处。因该处的阻抗
Z
m
i
n
=
Z
c
/
ρ
Z_{min}=Z_c/\rho
Zmin=Zc/ρ,故
Z
c
1
Z_{c1}
Zc1 应为
Z
c
1
=
Z
c
ρ
(3.127)
Z_{c1}=\frac{Z_c}{\sqrt{\rho}}\tag{3.127}
Zc1=ρZc(3.127)
通过上述分析,我们可以通过接入一段
λ
\lambda
λ/4 阻抗变换器来解决频率为
f
=
c
λ
f=\frac c \lambda
f=λc 的阻抗匹配问题,但在实际应用中我们输入的信号通常是一段工作频带。因此,在
λ
\lambda
λ/4 阻抗变换器取工作频带对应的中心频率
f
0
=
c
λ
0
f_0=\frac c {\lambda_0}
f0=λ0c 时,对输入阻抗随频率变化进行分析。此时,由式 (3.51) 可知,AA‘ 处的输入阻抗
Z
i
n
Z_{in}
Zin 为
Z
i
n
=
Z
c
1
R
l
+
j
Z
c
1
tan
β
λ
0
/
4
Z
c
1
+
j
R
l
tan
β
λ
0
/
4
=
Z
c
1
R
l
+
j
Z
c
1
tan
[
π
f
/
(
2
f
0
)
]
Z
c
1
+
j
R
l
tan
[
π
f
/
(
2
f
0
)
]
(3.128)
Z_{in}=Z_{c1}\frac{R_l+jZ_{c1}\tan\beta \lambda_0/4} {Z_{c1}+jR_l\tan\beta \lambda_0/4} = Z_{c1}\frac{R_l+jZ_{c1}\tan[\pi f/(2f_0)]} {Z_{c1}+jR_l\tan[\pi f/(2f_0)]}\tag{3.128}
Zin=Zc1Zc1+jRltanβλ0/4Rl+jZc1tanβλ0/4=Zc1Zc1+jRltan[πf/(2f0)]Rl+jZc1tan[πf/(2f0)](3.128)
式中,
β
λ
0
/
4
=
2
π
λ
⋅
λ
0
4
=
2
π
f
c
⋅
c
4
f
0
=
π
f
/
(
2
f
0
)
=
θ
\beta \lambda_0/4=\frac{2\pi}{\lambda}\cdot\frac{\lambda_0}{4}=\frac{2\pi f}{c}\cdot\frac{c}{4f_0}=\pi f/(2f_0)=\theta
βλ0/4=λ2π⋅4λ0=c2πf⋅4f0c=πf/(2f0)=θ 。于是,AA‘ 处的输入反射系数
Γ
i
n
\Gamma_{in}
Γin 的模为
∣
Γ
i
n
∣
=
∣
Z
i
n
−
Z
c
Z
i
n
+
Z
c
∣
=
[
1
+
4
Z
c
R
l
(
R
L
−
Z
c
)
2
sec
2
(
π
f
2
f
0
)
]
−
1
/
2
(3.129)
|\Gamma_{in}|=\bigg|\frac{Z_{in}-Z_c}{Z_{in}+Z_c}\bigg|= [1+\frac{4Z_cR_l}{(R_L-Z_c)^2}\sec^2(\frac{\pi f}{2f_0})]^{-1/2}\tag{3.129}
∣Γin∣=
Zin+ZcZin−Zc
=[1+(RL−Zc)24ZcRlsec2(2f0πf)]−1/2(3.129)
画出
∣
Γ
i
n
∣
|\Gamma_{in}|
∣Γin∣ 的频率特性曲线,如图 3.26 (a) 所示。
由图可见:
- λ \lambda λ/4 阻抗变换器只能在一个频率 ( f = f 0 f=f_0 f=f0) 上获得完全匹配,因此工作带宽很窄;
- 若 R l / Z c R_l/Z_c Rl/Zc 的值越接近于 1 1 1 ,则曲线的变化越平缓,其频率特性就越好。即:输入反射系数的模一定时,若 R l / Z c R_l/Z_c Rl/Zc 的值越接近于 1 1 1 ,则其工作带宽就越宽。
若假设传输线上导波的频率(或信号的某一频率)
f
f
f 近似等于
λ
/
4
\lambda/4
λ/4 阻抗变换器的设计频率(或信号工作频带的中心频率)
f
0
f_0
f0,则
l
≈
λ
0
/
4
,
θ
≈
π
/
2
l\approx\lambda_0/4,\theta\approx\pi/2
l≈λ0/4,θ≈π/2。于是,式 (3.129) 运用泰勒展开式可近似为
∣
Γ
i
n
∣
≈
∣
R
l
−
Z
c
∣
2
Z
c
R
l
cos
θ
(3.130)
|\Gamma_{in}|\approx\frac{|R_l-Z_c|}{2\sqrt{Z_cR_l}\cos\theta}\tag{3.130}
∣Γin∣≈2ZcRlcosθ∣Rl−Zc∣(3.130)
图 3.26 (b) 表示出阻抗变换器在导波频率
f
f
f 近似等于中心频率
f
0
f_0
f0 时,
∣
Γ
i
n
∣
|\Gamma_{in}|
∣Γin∣ 随
θ
\theta
θ 的变化曲线。
若假设阻抗变化器能够接受的反射系数最大幅值为
∣
Γ
∣
m
|\Gamma|_m
∣Γ∣m,则可定义其工作带宽对应的
Δ
θ
\Delta\theta
Δθ 为
Δ
θ
=
2
(
π
2
−
θ
m
)
\Delta\theta=2(\frac\pi2-\theta_m)
Δθ=2(2π−θm)
由此我们可以知道
λ
/
4
\lambda/4
λ/4 阻抗变换器的缺点有:占据一定的物理长度,且工作频带较窄。
为改善 λ / 4 \lambda/4 λ/4 阻抗变换器的工作频带的工作频带,可以采用补偿式 λ / 4 \lambda/4 λ/4 阻抗变换器、多节阻抗变换器和渐变式阻抗变换器。
3.8.3 支节调配器
支节匹配器是在主传输线的适当位置并联(或串联)合适的电纳(或电抗)性元件,以产生附加反射来抵消负载所产生的反射而达到匹配的目的。电纳或电抗性元件可采用终端短路传输线或终端开路传输线来实现,实际中以终端短路传输线并联在主传输线上最常见。常用的有单支节、双支节和三支节调配器。支节调配器除可以采用平行双导线,还可以依需同轴线以及带状线等结构实现。
注:由于终端开路传输线易引起波泄露而对系统产生其他干扰,因此常用终端短路传输线进行实现。
1. 单支节调配器
单支节调配器是在离终端适当位置处并联一可调短路传输线构成,如图 3.28 所示。调节支节接入位置距负载的距离(简称位置) d 1 d_1 d1 和支节长度 l 1 l_1 l1,使 A A ′ AA' AA′ 左边的主传输线达到匹配。
当 Z l ≠ Z c Z_l\neq Z_c Zl=Zc 时,传输线与负载不匹配,但可以在靠近负载的总传输线上找到一个位置 A A ′ AA' AA′ ,其输入导纳中的电导为 Y c Y_c Yc,即 Y 1 = Y c ± j B 1 Y_1 = Y_c\pm jB_1 Y1=Yc±jB1 。若在该处并联一个大小相等、性质相反的电纳 Y 2 = ∓ j B 1 Y_2 = \mp jB_1 Y2=∓jB1 的终端短路的支节线,则可以抵消 Y 1 Y_1 Y1 中的电纳,使总的输入导纳 y A = Y 1 + Y 2 = Y C y_A = Y_1+Y_2=Y_C yA=Y1+Y2=YC ,即 Z A = Z c Z_A=Z_c ZA=Zc,此时 A A ′ AA' AA′ 左边得传输线上没有反射波而实现匹配。并联支节线的位置 d 1 d_1 d1 和支节长度 l 1 l_1 l1 可采用代数方法或圆图确定。
由式 (3.51) 可知主传输线上
A
A
′
AA'
AA′ 处右端的输入阻抗为
Z
1
=
Z
c
Z
l
+
j
Z
c
tan
β
d
1
Z
c
+
j
Z
l
tan
β
d
1
=
Z
c
(
R
l
+
j
X
l
)
+
j
Z
c
t
Z
c
+
j
(
R
l
+
j
X
l
)
t
Z_1=Z_c\frac{Z_l+jZ_c\tan\beta d_1}{Z_c+jZ_l\tan\beta d_1}= Z_c\frac{(R_l+jX_l)+jZ_ct}{Z_c+j(R_l+jX_l)t}
Z1=ZcZc+jZltanβd1Zl+jZctanβd1=ZcZc+j(Rl+jXl)t(Rl+jXl)+jZct
式中,
Z
l
=
R
l
+
j
X
l
,
t
=
tan
β
d
1
Z_l=R_l+jX_l,t=\tan\beta d_1
Zl=Rl+jXl,t=tanβd1。于是,主传输线上
A
A
′
AA'
AA′ 处右端的输入导纳为
Y
1
=
1
Z
1
=
G
1
+
j
B
1
=
R
l
(
1
+
t
2
)
R
l
2
+
(
X
l
+
Z
c
t
)
2
+
j
R
l
2
t
−
(
Z
c
−
X
l
t
)
(
X
l
+
Z
c
t
)
Z
c
[
R
l
2
+
(
X
l
+
Z
c
t
)
2
]
(3.133)
Y_1 = \frac{1}{Z_1}=G_1+jB_1=\frac{R_l(1+t^2)}{R_l^2+(X_l+Z_ct)^2}+ j\frac{R_l^2t-(Z_c-X_lt)(X_l+Z_ct)}{Z_c[R_l^2+(X_l+Z_ct)^2]}\tag{3.133}
Y1=Z11=G1+jB1=Rl2+(Xl+Zct)2Rl(1+t2)+jZc[Rl2+(Xl+Zct)2]Rl2t−(Zc−Xlt)(Xl+Zct)(3.133)
为获得匹配,令
G
1
=
Y
c
=
1
/
Z
c
G_1=Y_c=1/Z_c
G1=Yc=1/Zc,则有
Z
c
(
R
l
−
Z
c
)
t
2
−
2
X
l
Z
c
t
+
(
R
l
Z
c
−
R
l
2
−
X
l
2
)
=
0
Z_c(R_l-Z_c)t^2-2X_lZ_ct+(R_lZ_c-R_l^2-X_l^2)=0
Zc(Rl−Zc)t2−2XlZct+(RlZc−Rl2−Xl2)=0
由此解得
t
=
{
X
l
±
R
l
[
(
R
l
−
Z
c
)
2
+
X
l
2
]
/
Z
c
R
l
−
Z
c
,
R
l
≠
Z
c
−
X
l
2
Z
c
,
R
l
=
Z
c
t= \begin{cases} \frac{X_l\pm\sqrt{R_l[(R_l-Z_c)^2+X_l^2]/Z_c}}{R_l-Z_c},\hspace{1em}R_l\neq Z_c \\ \\-\frac{X_l}{2Z_c},\hspace{1em}R_l= Z_c \end{cases}
t=⎩
⎨
⎧Rl−ZcXl±Rl[(Rl−Zc)2+Xl2]/Zc,Rl=Zc−2ZcXl,Rl=Zc
从而由式 (3.134) 可得
d
1
d_1
d1 的表达式为
d
1
λ
=
{
1
2
π
arctan
t
,
t
≥
0
1
2
π
(
π
+
arctan
t
)
,
t
<
0
(3.135)
\frac{d_1}{\lambda} = \begin{cases} \frac{1}{2\pi}\arctan t,\hspace{1em}t \ge 0\\\\ \frac{1}{2\pi}(\pi+\arctan t),\hspace{1em}t<0 \end{cases} \tag{3.135}
λd1=⎩
⎨
⎧2π1arctant,t≥02π1(π+arctant),t<0(3.135)
设
Y
2
=
j
B
2
Y_2=jB_2
Y2=jB2,并令
B
2
=
−
B
1
B_2=-B_1
B2=−B1,可得终端短路支节线得长度
l
1
l_1
l1 为
l
1
λ
=
1
2
π
arctan
(
Y
c
B
1
)
(3.136a)
\frac{l_1}{\lambda}=\frac{1}{2\pi}\arctan(\frac{Y_c}{B_1})\tag{3.136a}
λl1=2π1arctan(B1Yc)(3.136a)
同理,对于终端开路支节线,则
l
1
l_1
l1 为
l
1
λ
=
−
1
2
π
arctan
(
B
1
Y
c
)
(3.136b)
\frac{l_1}{\lambda}=-\frac{1}{2\pi}\arctan(\frac{B_1}{Y_c})\tag{3.136b}
λl1=−2π1arctan(YcB1)(3.136b)
2. 双支节调配器
单支节调配器得优点是结构简单,对任意得终端负载都可达到匹配的目的,缺点在于当负载发生变化时,需要调节支节线的接入位置。若要固定支节线的位置,可以采用双支节调配器进行匹配,如图 3.29 所示。
其中两支节的间距 d 2 d_2 d2 一般取 λ / 8 \lambda/8 λ/8 或其整数倍,但不能取 λ / 2 \lambda/2 λ/2 或其整数倍,而 z z z 和 y y y 分别为归一化阻抗和归一化导纳。
二支节调配器分析过程略。(…)
通过两支节调配器,当负载发生变化时,我们可不必更改调配器位置只需修正两支节的长度 l 1 , l 2 l_1,l_2 l1,l2 即可。但两支节调配器存在匹配盲区。
3. 三支节调配器
为弥补双支节调配器存在盲区这一缺陷,可以在双支节调配器的基础上增加一个支节线构成三支节调配器,如图 3.32 所示。其中,为简单起见,选取支节线 1 1 1 与负载并联,而相邻支节间的间距仍取为 λ / 8 , λ / 4 , 3 λ / 8 \lambda/8,\lambda/4,3\lambda/8 λ/8,λ/4,3λ/8。其调配原理同上。
3.9 均匀传输线与四端网络的等效
(…)