大数据开发:Kafka工作原理入门

Kafka在大数据技术生态当中,以作为消息系统而闻名,面对活跃的流式数据,提供高吞吐量的服务,在实时大数据处理场景下,可以说是一大利器,国内外大厂都有应用。今天的大数据开发分享,我们就主要来讲讲Kafka框架的工作原理。

Kafka概述

官方定义,Kakfa是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据的实时处理领域。

通常来说,消息队列的模式分为两种:

①点对点模式:消息生产者发送消息到消息队列中,然后消息消费者从队列中取出并且消费消息,消息被消费后,队列中不在存储。

②发布/订阅模式(一对多,消费者消费数据之后不会清除消息):消息生产者将消息发布到Topic中,同时有多个消息消费者(订阅)消费该消息。

Kafka就是典型的发布/订阅模式,更加适用于实时大数据场景下的消息服务。

Kafka基础架构

Kafka的基础架构主要有Broker、生产者、消费者组构成,当前还包括ZooKeeper。

生产者负责发送消息,Broker负责缓冲消息,Broker中可以创建Topic,每个Topic又有Partition和Replication的概念。

消费者组负责处理消息,同一个消费者组的消费者不能消费同一个Partition中的数据。

消费者组主要是提高消费能力,比如之前是一个消费者消费100条数据,现在是2个消费者消费100条数据,可以提高消费能力。

所以消费者组的消费者的个数要小于Partition的个数,不然就会有消费者没有Partition可以消费,造成资源的浪费。

注意:不同消费者组的消费者是可以消费相同的Partition数据。

Kakfa如果要组件集群,则只需要注册到一个ZooKeeper中就可以了,ZooKeeper中还保留消息消费的进度或者说偏移量或者消费位置:

0.9之前的版本偏移量存储在ZooKeeper。

0.9之后的版本偏移量存储在Kafka中。Kafka定义了一个系统Topic,专用用来存储偏移量的数据。这样做主要是考虑到频繁更改偏移量,对ZooKeeper的压力较大,而且Kafka本身自己的处理也较复杂。

Kafka不能保证消息的全局有序,只能保证消息在Partition内有序,因为消费者消费消息是在不同的Partition中随机的。

Kafka工作流程

Kafka中的消息是以Topic进行分类的,生产者生成消息、消费者消费消息都面向Topic。

Topic是一个逻辑上的概念,而Partition是物理上的概念。每个Partition又有副本的概念。

每个Partition对应于一个Log文件,该Log文件中存储的就是生产者生成的数据,生产者生成的数据会不断的追加到该Log的文件末端。

且每条数据都有自己的Offset,消费者都会实时记录自己消费到了那个Offset,以便出错的时候从上次的位置继续消费,这个Offset就保存在Index文件中。

Kafka的Offset是分区内有序的,但是在不同分区中是无顺序的,Kafka不保证数据的全局有序。

关于大数据开发,Kafka工作原理入门,以上就为大家做了简单的介绍了。Kafka在大数据技术生态当中,普及度是非常高的,尤其是拥有丰富数据资源的企业,更加青睐于使用kafka。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值