MAX-HEAPIFY(A, i)
l <- LEFT(i)
r <- RIGHT(i)
if l <= heap-size[A] and A[l] > A[i]
then largest <- l
else largest <- i
if r <= heap-size[A] and A[r] > A[largest]
then largest <- r
if largest != i
then exchange A[i] <-> A[largest]
MAX-HEAPIFY(A,largest)
**************************************
**************************************
1. 参数A是二叉堆数组,参数i是某个子堆的顶节点,i节点的左右子堆满足堆性质,但i节点可能不满足堆性质。
2. 获取i节点的左孩子对应于数组A的下标索引l
3. 获取i节点的右孩子对应的数组A的下标索引r
4. 如果l(即i节点的左孩子在数组A中的下标索引)没有超出二叉堆的范围(heap-size[A]),而且索引l对应的节点的值大于节点i的值
5. 那么,largest存储较大的索引节点,依照第4行的判断,如果左孩子的值大于节点i的值,则存储到下标索引(l)到largest
6. 否则,则存储节点i下标索引(i)到largest,这时,largest中保存的是i节点和i节点的左孩子中较大值的下标索引
7. 同第4行,开始比较i节点的右孩子,同样需要判断是否已经超出了堆的有效长度,这时候和右孩子的值进行比较的是largest,因为largest所对应的值,是i节点和左孩子中的较大值。
8. 如果A[r]的值大于A[largest],那么把r存储到largest,这时候就保证了largest中保存的是节点i和其左右孩子的最大值的下标索引。
9. 如果i节点不是最大节点
10. 那么,交换i节点和largest索引对应的值
11.交换后,可能破坏堆性质,递归调用MAX-HEAPIFY,递归调用后,树向下转移一层,递归调用的终结条件为l和r超出了heap-size[A]的有效长度。