贝叶斯模型
高斯分布(正太分布)朴素贝叶斯
伯努利分布朴素贝叶斯
多项式分布朴素贝叶斯
使用
#导包
import numpy as np
# 伯努利分布(抛硬币,生小孩性别),正太分布(身高,体重,智商,鸢尾花的花瓣长度),多项分布(掷骰子)
from sklearn.naive_bayes import BernoulliNB,GaussianNB,MultinomialNB
from sklearn import datasets
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
#鸢尾花
X,y = datasets.load_iris(True)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
#高斯分布朴素贝叶斯
gNB = GaussianNB()
gNB.fit(X_train,y_train)
print(gNB.class_prior_) #类别权重
#array([0.3, 0.3333333333, 0.36666667]) 加和为1
gNB.score(X_test,y_test)
#分数 0.9666666666666667
GaussianNB里面有两个参数
priors:优先权 如果不指定的话会按照数据自动进行调整 样本不平衡时会调整
比如 样本数据一个是10个另一个是90个 那么就会调整10个的占的比重大一点
var_smoothing:方差_平滑 添加方差使得计算更加稳定
for i in range(3):
print((y_train==i).sum())
#36 40 44
[36/120,40/120,44/120]
#[0.3, 0.3333333333, 0.36666667]
gNB=GaussianNB(priors=[1/3,1/3,1/3]
可以自动指定权重 priors=[0.5,0.25,0.25]
#伯努利朴素贝叶斯
bNB = BernoulliNB() #有四个参数 class_prior
bNB.fit(X_train,y_train)
bNB.score(X_test,y_test)
#0.3
# 因为数据特征不是二项分布,准确很低
#多项式朴素贝叶斯
mNB = MultinomialNB()
mNB.fit(X_train,y_train)
mNB.score(X_test,y_test)
#0.9666666666666667