在大数据分析和处理的场景中,Excel 文件是一个常见的数据源。本文将介绍如何使用 Python 中的 UnstructuredExcelLoader
和 Azure 的 Document Intelligence 服务来加载和解析 Excel 文件。通过这些工具,我们可以将结构化的数据转换为易于处理的文本格式,从而进一步进行分析或机器学习使用。
技术背景介绍
Excel 文件是广泛应用于业务和数据分析的一种文件格式,支持复杂的数据表格和公式。为了能够对这些文件进行高效处理,我们需要将其内容转换为标准化的文本格式或结构化的数据集合。
UnstructuredExcelLoader
是 langchain
可以用来解析 Excel 文件的工具,它支持 .xlsx
和 .xls
格式的文件。Azure AI Document Intelligence 是另一种强大的工具,可以从数字或扫描的文件中提取文本和结构信息。
核心原理解析
UnstructuredExcelLoader
提供了一种将 Excel 文件转换为文档对象的方式。每个文档对象包含了页面内容以及相关的元数据信息。Azure AI Document Intelligence 则通过机器学习模型获取文档的布局信息,支持从多种格式的文件中提取文本、表格和其他结构信息。
代码实现演示
使用 UnstructuredExcelLoader 加载 Excel 文件
首先,我们通过 UnstructuredExcelLoader
加载本地 Excel 文件。下面是一个具体的实现示例:
%pip install --upgrade --quiet langchain-community unstructured openpyxl
from langchain_community.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader("./example_data/stanley-cups.xlsx", mode="elements")
docs = loader.load()
print(len(docs))
print(docs)
在以上代码中,我们使用 UnstructuredExcelLoader
将 stanley-cups.xlsx
文件加载为文档对象列表,并打印这些文档对象的长度和内容。
使用 Azure AI Document Intelligence 解析文件
若要使用 Azure AI 的 Document Intelligence 进行文件解析,需配置 Azure 资源信息,并使用相应的 API:
%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, file_path=file_path, api_model="prebuilt-layout"
)
documents = loader.load()
在这段代码中,我们定义了 file_path
、endpoint
和 key
,这些都是你在 Azure 上的服务配置。AzureAIDocumentIntelligenceLoader
使用这些信息从文档中提取文本和结构信息。
应用场景分析
- 数据转换:将 Excel 文件中的数据转换为可处理的文本格式,便于进一步文本分析或机器学习模型的输入。
- 自动化报告生成:利用解析后的数据生成自动报告。
- 文档管理:将企业文档处理为可搜索的数据库。
实践建议
- 准确配置 API:确保在使用 Azure 服务时准确配置 endpoint 和 api_key。
- 考虑数据隐私:处理敏感数据时,保证数据传输和存储的安全性。
- 结合多种工具:可以结合使用不同的文档加载器,优化解析过程。
如果遇到问题欢迎在评论区交流。
—END—