数据分析
take off now
Boost
展开
-
numpy中一些常用的方法
1、创建全部为1的方法import numpy as npt = np.ones(2,3)print(t)结果如下:[[1. 1. 1.] [1. 1. 1.]]2、创建全部为0的方法t1 = np.zeros((3,4))print(t1)结果如下:[[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]3、创建一个对角线为1的正方形数组(方阵)t2 = np.eye(10)print(t2)结果如下:[[1. 0. 0.原创 2020-07-25 15:27:21 · 496 阅读 · 0 评论 -
numpy中的clip裁剪 将数组中的数值转换为nan类型
代码演示:首先创建一个10*10的二维数组[数组的创建](https://blog.csdn.net/shuyv/article/details/104351366)import numpy as npt2 = np.arange(100).reshape(10,10)print(t2)t2的结果如下:[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [20 21 22 23 24 25 26 27 28原创 2020-07-23 00:21:36 · 998 阅读 · 0 评论 -
numpy中的数值修改
numpy中的书只修改其实也很简单,相当于重新定义,重新等号赋值即可。代码演示:首先创建一个10*10的二维数组数组的创建import numpy as npt2 = np.arange(100).reshape(10,10)print(t2)t2的结果如下:[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [20 21 22 23 24 25 26 27 28 29] [30 31 32 33 34原创 2020-07-22 23:06:20 · 5981 阅读 · 0 评论 -
numpy中的索引和切片
代码演示:numpy中的索引也是从零开始,切片表示方法和列表中的方法基本相同首先创建一个10*10二维数组t2:t2 = np.arange(100).reshape(10,10)数组的创建方法import numpy as npt2 = np.arange(100).reshape(10,10)print(t2)t2数组如下[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [20 21 22 23原创 2020-07-22 22:33:07 · 279 阅读 · 0 评论 -
numpy转置的常见方式
轴:对于一维数组中只有一个0轴对于二维数组(shape(2,2))有0轴和1轴对于三维数组(shape(2,2,2))有0轴1轴和2轴numpy中的转置代码演示:import numpy as npt2 = np.arange(24).reshape(4,6)print(t2)print("-"*50)# 转置 以下转置方法效果相同 将行和列进行变换print(t2.transpose())print(t2.T)# 或者将轴改变,因为t2数组是二维数组,所以可以改变0轴和1轴原创 2020-07-22 00:27:28 · 2223 阅读 · 0 评论 -
猫眼Top100简单爬虫可视化
基本思路:1、url进入到电影网,首先对url进行简单的处理,我们发现该网站有10页,每页有10部电影。这是猫眼top100的第一页url形式https://maoyan.com/board/4?offset=0 通过对url的分析,可以发现url中的offset参数每增加一页就会增加10.2、请求头(headers)由于猫眼电影网的反爬技术,可以通过请求头来反反爬!如果不写请求头headers有可能会被封IP。这里我的代码中只写了一个headers就可以抓到信息,一般来讲,一个请求头即原创 2020-07-09 00:06:10 · 2382 阅读 · 2 评论 -
XPath讲解
简介:XPath是一门在HTML文档中查找信息的语言。它可以用来在XML文档中对元素和属性进行遍历。对XPath的理解是很多高级XML应用基础。学习XPath的基础:HTML / XHTMLXML和XML命名空间XPAath节点:在 XPath 中,有七种类型的节点:元素、属性、文本、命名空间、处理指令、注释以及文档节点(或称为根节点)。1、节点:在XPath中,有七种类型的节点:元素、属性、文本、命名空间、处理指令、注释以及文档(跟)节点。XML文档是被作为节点树来对待的。树的根被称作原创 2020-07-08 23:50:56 · 801 阅读 · 0 评论 -
numpy 数组得创建
import numpy as num# 1.shuzu1 = num.array([1, 2, 3])print(shuzu1)print(type(shuzu1))# [1 2 3]# <class 'numpy.ndarray'># 2.shuzu2 = num.array(range(10))print(shuzu2)# [0 1 2 3 4 5 6 7...原创 2020-02-17 00:00:08 · 172 阅读 · 0 评论 -
numpy 数组的计算
1.数组与数字间的计算(广播机制)import numpy as num# 先创建一个二维数组shape(2,3)shuzu3 = num.array([[0, 2, 3], [4, 5, 6]])print(shuzu3)print()print(shuzu3+3)结果如下:[[0 2 3] [4 5 6]][[3 5 6] [7 8 9]]结果表明:二位数组中的...原创 2020-02-07 20:03:53 · 846 阅读 · 0 评论 -
numpy 数组的形状
下面所说的数组的形状都是矩阵,因此除了用reshape方法改变数组的形状,还可以结合列表推导式,解析嵌套列表。嵌套列表解析讲解numpyimport numpy as num# 一维数组shuzu1 = num.array([1,2,3,4,5])print(shuzu1.shape)# 结果:(5,) 一维数组,只有五个元素# 二维数组shuzu2 = num.arr...原创 2020-02-07 17:04:13 · 562 阅读 · 0 评论 -
matplotlib 绘制多个条形图
举例三个电影三天票房的对比情况from matplotlib import pyplot as pltfrom matplotlib import font_managermy_font = font_manager.FontProperties(fname="C:\Windows\Fonts\SimSun.ttc")a = ["猩球崛起3:终局之战","顿刻尔克","蜘蛛侠:英雄归来...原创 2020-02-01 19:56:20 · 3219 阅读 · 0 评论 -
matplotlib 绘制条形图
举例2017年电影票房from matplotlib import pyplot as pltfrom matplotlib import font_managermy_font = font_manager.FontProperties(fname="C:\Windows\Fonts\SimSun.ttc")x = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇",...原创 2020-02-01 17:54:12 · 308 阅读 · 0 评论 -
matplotlib 绘制散点图
举例:假设通过爬虫你获取到了2016年3,10月份每天白天的最高气温(分别位于列表a,b)#那么此时如何寻找出气温和随时间(天)变化的某种规律?from matplotlib import pyplot as pltfrom matplotlib import font_managermy_font = font_manager.FontProperties(fname="c:\win...原创 2020-02-01 14:00:48 · 256 阅读 · 1 评论 -
matplotlib 绘制折线图
利用matplotlib绘制折线图的流程from matplotlib import pyplot as pltfrom matplotlib import font_manager# 设置图形大小plt.figure(figsize=(20,8),dpi=80)my_font = font_manager.FontProperties(fname="c:\windows\fonts...原创 2020-01-27 11:38:39 · 229 阅读 · 0 评论