激光SLAM学习笔记
文章平均质量分 85
shy2333
这个作者很懒,什么都没留下…
展开
-
【论文阅读】SLAMesh
目前大多数激光雷达 SLAM 系统在点云中构建地图,这些点云在放大后稀疏,但在人眼看来却很密集。密集地图对于机器人应用程序是必不可少的,比如基于地图的导航。由于网格的低内存成本,近年来网格成为一种很有吸引力的稠密建图模型。然而,现有的方法通常使用离线生成网格图。这两步流程不允许这些方法在线使用构建的网格地图,也不允许本地化和网格化相互受益。为了解决这一问题,我们提出了第一个 CPU 唯一的实时 LiDAR SLAM 系统,该系统可以同时建立网格图并对网格图进行定位。基于高斯过程。原创 2023-10-01 13:31:16 · 362 阅读 · 1 评论 -
【论文阅读】GP-SLAM
链接:原创 2023-09-28 09:12:42 · 184 阅读 · 0 评论 -
【论文阅读】LinK3D
特征提取与匹配是许多计算机视觉任务的基本组成部分,例如二维或三维目标检测、识别和配准。众所周知,二维特征提取与匹配已经取得了很大的成功。遗憾的是,在三维领域,目前的方法由于描述性差、效率低,无法支持三维激光雷达传感器在视觉任务中的广泛应用。为了解决这个问题,论文提出了一种新的三维特征表示方法:三维激光雷达点云的线性关键点表示,称为LinK3D。LinK3D的新颖之处在于,它充分考虑了LiDAR点云的稀疏性场景复杂性等特点,用其鲁棒的相邻关键点来表示当前关键点,对当前关键点的描述提供了较强的约束。原创 2023-07-18 15:49:54 · 542 阅读 · 1 评论 -
【论文阅读】FAST-LIO
针对fast-lio的阅读记录原创 2023-06-05 15:22:43 · 847 阅读 · 0 评论 -
LOAM详解(四)补充
,然后利用权重分别校正点到线面向量在。原创 2023-07-20 11:54:12 · 198 阅读 · 1 评论 -
LOAM详解(三)激光建图
其中最后整合出一个10HZ的位姿输出方法是:可以看到,q_w_curr以1HZ的频率进行更新,其他情况下用的都是未更新量。原创 2023-07-20 11:52:27 · 414 阅读 · 3 评论 -
LOAM详解(二)激光里程计
就像14讲中第六章ceres例题,用100个常量去优化三个未知数,这里也用数个点到线点到面的约束去优化位姿。改进方式:加入信息矩阵,根据点到线面的距离设置权重。原创 2023-07-20 11:55:16 · 429 阅读 · 1 评论 -
LOAM详解(一)特征点提取
本文指在对ALOAM的流程进行梳理,并对其中的一些问题进行整理原创 2023-05-05 13:04:41 · 2150 阅读 · 1 评论 -
NDT原理详解
针对深蓝《多传感器融合与定位》的NDT学习记录原创 2023-05-08 15:19:22 · 486 阅读 · 0 评论 -
ICP(二)手动实现ICP
手撕ICP原创 2023-07-20 11:31:30 · 358 阅读 · 1 评论 -
ICP(一)原理详解
ICP原理详解原创 2023-05-06 20:29:17 · 903 阅读 · 1 评论