题意
将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;
问有多少种不同的分法。
输入:n,k ( 6 < n ≤ 200,2 ≤ k ≤ 6 )
输出:一个整数,即不同的分法。
思路
用一个二维数组,a[i][j]表示 可以将i分成j份;
1.可以先拿出一个x,题目便成为将n-x分成k-1份,为了不重复,保证每次拿的x不小于上一次拿的x,现在我们拿出一个1(即现在是有1的情况),有a[i-1][j-1]种情况。
2.没有1的情况,每份先分配一个1,有a[i-j][j]种情况。(i<=j时不会出现这种情况)
3.注意:把n分成1份,有一种情况。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int a[205][7];///a[i][j] 将i分成j份
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
a[i][1]=1;
for(int i=2;i<=n;i++)
{
for(int j=2;j<=k;j++)
{
if(i>j)
a[i][j]=a[i-1][j-1]+a[i-j][j];
else
a[i][j]=a[i-1][j-1];
}
}
printf("%d\n",a[n][k]);
return 0;
}