二叉搜索树的删除指定元素节点操作

 //提供一个给用户方便使用的方法,在这个方法中调用私有方法
    public void remove(E e) {
        remove(root,e);
    }
    //删除以node为根的二分搜索树中值为e的节点,递归算法
    //返回删除节点后新的二分搜索树的根

    /**
     * 
     * @param node
     * @param e
     * @return
     * 逻辑:当root为空时,直接返回null
     * 当待删除元素e小于当前节点元素时,找当前元素的左子树,递归
     * 当待删除元素e大于当前节点元素时,找当前元素的右子树,递归
     * 当待删除元素e正好等于当前元素节点时,开始删除操作
     *  :如果当前元素的左子树为空,那么直接将右节点作为子树,替换当前元素的位置
     *  :如果当前元素的右子树为空,那么直接将左节点作为子树,替换当前元素的位置
     *  :如果当前元素左右子树都不为空,那么就
     *      寻找当前元素的右子树的最小节点,保存为successor
     *      删除当前元素右子树的最小节点successor,并将删除后的树链接为为successor的右子树,  
     *      将当前节点的左子树连接到successor上。
     *  逻辑结束。
     */
    private Node remove(Node node,E e) {
        if(node == null)
            return null;
        if(e.compareTo(node.e) < 0) {
            node.left = remove(node.left,e);
            return node;
        }else if(e.compareTo(node.e) > 0) {
            node.right = remove(node.right,e);
            return node;
        }else {//e == node.e
            if(node.left == null) {
                Node rightNdoe = node.right;
                node.right = null;
                size--;
                return rightNdoe;
            }
            if(node.right == null) {
                Node leftNode = node.left;
                node.left = null;
                size--;
                return leftNode;
            }
            //待删除左右子树均不为空
            //找到比代删除节点大的的最小节点,即待删除节点右子树的最小节点
            //用这个节点替代待删除节点的位置
            Node successor = minmum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            successor.left = node.left;
            node.left = node.right = null;
            return successor;
        }

    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值