//提供一个给用户方便使用的方法,在这个方法中调用私有方法
public void remove(E e) {
remove(root,e);
}
//删除以node为根的二分搜索树中值为e的节点,递归算法
//返回删除节点后新的二分搜索树的根
/**
*
* @param node
* @param e
* @return
* 逻辑:当root为空时,直接返回null
* 当待删除元素e小于当前节点元素时,找当前元素的左子树,递归
* 当待删除元素e大于当前节点元素时,找当前元素的右子树,递归
* 当待删除元素e正好等于当前元素节点时,开始删除操作
* :如果当前元素的左子树为空,那么直接将右节点作为子树,替换当前元素的位置
* :如果当前元素的右子树为空,那么直接将左节点作为子树,替换当前元素的位置
* :如果当前元素左右子树都不为空,那么就
* 寻找当前元素的右子树的最小节点,保存为successor
* 删除当前元素右子树的最小节点successor,并将删除后的树链接为为successor的右子树,
* 将当前节点的左子树连接到successor上。
* 逻辑结束。
*/
private Node remove(Node node,E e) {
if(node == null)
return null;
if(e.compareTo(node.e) < 0) {
node.left = remove(node.left,e);
return node;
}else if(e.compareTo(node.e) > 0) {
node.right = remove(node.right,e);
return node;
}else {//e == node.e
if(node.left == null) {
Node rightNdoe = node.right;
node.right = null;
size--;
return rightNdoe;
}
if(node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
//待删除左右子树均不为空
//找到比代删除节点大的的最小节点,即待删除节点右子树的最小节点
//用这个节点替代待删除节点的位置
Node successor = minmum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
二叉搜索树的删除指定元素节点操作
最新推荐文章于 2024-08-22 17:49:03 发布