杨辉三角

一:题目

118. 杨辉三角 - 力扣(LeetCode)

二:思路

①:将其看作一个二维数组

 解释:杨辉三角的规律就是

a:第n行就有n个元素,每一行的首尾元素都是1

b:[ i ][ j ]元素等于[ i-1 ][ j-1 ]元素+[ i-1 ][ j ]元素

②:vector<vector<int>>的理解

<vector<int>:

 

vector<vector<int>>:

解释:vector<vector<int>>类的对象假设为vv,则vv[ i ]得到了a指向的一块连续的空间A,i代表该A空间上的第i-1个元素,该元素为类型 vector<int>,此时若是vv[ i ][ j ],则代表得到的是空间A上的第i-1个元素(vector<int>)中的a指向的空间中的第j-1个元素(int)

三:代码

class Solution {
public:
    vector<vector<int>> generate(int numRows) {

        vector<vector<int>> vv;
        vv.resize(numRows);//vector<int>这样会让指向的空间的int的个数为numRows
                           //vector<vector<int>>让指向的空间vector<int>的个数为numRows 即确定了有多少行
        
        for(int i = 0;i<numRows;i++)//置每一行有几列 第一行一列 第二行二列 以此类推
        {
            vv[i].resize(i+1,0);//每一行有i+1列 且暂先全置为0
            vv[i].front() = vv[i].back() = 1;//每一行中的第一个和最后一个元素为1 符合杨辉三角的轮廓
        }

        for(int i=0; i<numRows; i++)//置每一行除开首尾元素的其余元素的值(根据杨辉三角的规律)
        {
            for(int j=0; j<vv[i].size(); j++)
            {
                if(vv[i][j]==0)//为0不处理 
                {
                    vv[i][j] = vv[i-1][j-1]+vv[i-1][j];//[i][j]元素等于[i-1][j-1]元素+[i-1][j]元素
                }

            }
        }
        return vv;
    }
};

解释:

①: vv.resize(numRows),确定了二维数组的行数,也可以理解为确定了上图中空间A的元素的个数

②:第一个for循环,根据杨辉三角的规律(第n行就有n个元素,每一行的首尾元素都为1),resize(i+1,0)中的i+1让第n行就有n个元素(i=0,代表第一行,则有i+1,也就是1个元素),然后把每一行的元素全置为0,再首尾置为1

③:两个for循环嵌套,让vv[ i ][ j ]可以被正确的赋值

④:元素为0,则不处理,一方面是贴合题目,第二方面是会越界(i=0 j=0 ,此时再-1,则越界)

无注释版:

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
        vector<vector<int>> vv;
        vv.resize(numRows);
        
        for(int i = 0;i<numRows;i++)
        {
            vv[i].resize(i+1,0);
            vv[i].front() = vv[i].back() = 1;
        }

        for(int i=0; i<numRows; i++)
        {
            for(int j=0; j<vv[i].size(); j++)
            {
                if(vv[i][j]==0)
                {
                    vv[i][j] = vv[i-1][j-1]+vv[i-1][j];
                }
            }
        }
          return vv;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值