位图的实现和拓展

一:位图的介绍

①:需要位图的场景

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中?

要判断一个数是否在某一堆数中,我们可能会想到如下方法:

A:将这一堆数进行排序,然后通过二分查找的方法判断该数是否在这一堆数中。
B:将这一堆数插入到unordered_set容器中,然后调用find函数判断该数是否在这一堆数中。


单从方法上来看,这两种方法都是可以,而且效率也不错,第一种方法的时间复杂度是O (NlogN ) O(NlogN)O(NlogN),第二种方法的时间复杂度是O (N)

重点是,40亿个数,占用16G的空间,空间消耗是很大的,不可能用代码直接开辟出16g的空间!

所以,这时候,就需要位图了

②:位图的意义

 在上述问题中,我们只需确定某个无符号整数是否存在,即只有两种可能的状态(存在或不存在)。因此,可以用一个二进制位来表示无符号整数的状态:1表示存在,0表示不存在。如图:

无符号整数总共有232个,因此记录这些数字就需要232个比特位,也就是512M的内存空间,内存消耗大大减少。 

 ③:位图的概念及使用场景

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

位图的使用场景:
1. 快速查找某个数据是否在一个集合中
2. 排序 + 去重
3. 求两个集合的交集、并集等
4. 操作系统中磁盘块标记

二:库中的位图的使用方法

①:bitset的定义方式

// 构造一个16位的位图,所有位都初始化为0。
bitset<16> bs1; //0000000000000000

//构造一个16位的位图,根据所给值初始化位图的前n位。
bitset<16> bs2(0xfa5); //0000111110100101

//构造一个16位的位图,根据字符串中的0/1序列初始化位图的前n位。
bitset<16> bs3(string("10111001")); //0000000010111001

解释: bs2(0xfa5)

用十六进制数 0xfa5 初始化 bs2;0xfa5 的二进制形式是 111110100101(共 12 位)。

由于 bitset 是 16 位的,而 0xfa5 只有 12 位,因此 高位补 0,最终存储为:
0000111110100101(16 位)。

②:bieset的成员函数

#include <iostream>
#include <bitset>
using namespace std;

int main()
{
	bitset<8> bs;
	bs.set(2); //设置第2位
	bs.set(4); //设置第4位
	cout << bs << endl; //00010100
	
	bs.flip(); //反转所有位
	cout << bs << endl; //11101011
	cout << bs.count() << endl; //6

	cout << bs.test(3) << endl; //1

	bs.reset(0); //清空第0位
	cout << bs << endl; //11101010

	bs.flip(7); //反转第7位
	cout << bs << endl; //01101010

	cout << bs.size() << endl; //8

	cout << bs.any() << endl; //1

	bs.reset(); //清空所有位
	cout << bs.none() << endl; //1

	bs.set(); //设置所有位
	cout << bs.all() << endl; //1
	return 0;
}

运行结果:

 bitset还有各种运算符的使用.......不再介绍了

三:位图的模拟实现

前提须知:& 和 | 的规则:

虽然位图有这么多的函数,但是我们实现,只实现set、reset、tes,已经能让我们了解bitset了!

①:构造函数

template<size_t N>
class bitset
{
    //构造函数
    bitset()
    {
        _bits.resize(N/32 + 1, 0); // 初始化所有位为 0
    }


    private:
		vector<int> _bits;
        
};

解释:N/32+1的意义

我们一般从题目中得到了整形的个数后,用bitset去开辟相应个数的位出来,所以先N/32;

假设现在有50个数,那我们应该开50个位出来,但是50/32只能得到1,所以直接50/32+1等于2,开辟两个整形出来,即64个位;避免小于32的数字在构造函数里面开辟了0个空间;

②:set函数->将第 x 位设为 1

void set(size_t x)
{
    assert(x <= N); // 检查 x 是否越界

    size_t i = x / 32; // 计算 x 在哪个 int 中
    size_t j = x % 32; // 计算 x 在该 int 中的比特位位置

    _bits[i] |= (1 << j); // 将第 j 位设为 1
}

解释:_bits[i] |= (1 << j) 

旨在:通过位运算将第 j 位设为 1,且不影响其他位。

假设通过前两步得知我们的x对应的位是vector中第一个整形中的第五个二进制位,所以_bits[1] |= (1 << 5) 的效果如图:

符合预期,把第5位 置为了1

这例子很简单,如果原本的vector的其他位也有位1的,这时候进行|=操作后,照样是不影响其他位的,因为|代表一个为1则为1,两个为0才是0,所以不影响!

③:reset函数->将第 x 位设为 0

void reset(size_t x)
{
    assert(x <= N);

    size_t i = x / 32;
    size_t j = x % 32;

    _bits[i] &= ~(1 << j); // 将第 j 位设为 0
}

解释:_bits[i] &=  ~(1 << j) 

通过位运算将第 j 位设为 1,且不影响其他位。

假设通过前两步得知我们的x对应的位是vector中第一个整形中的第五个二进制位,所以_bits[1] &= ~(1 << 5) 的效果如图:

符合预期,把第5位 置为了0

这例子很简单,如果原本的vector的其他位也有位1的,这时候进行&=操作后,照样是不影响其他位的,因为&代表一个为0则为0,两个为1才是1,所以不影响!

④:test函数->检查第 x 位是否为 1

bool test(size_t x)
{
    assert(x <= N);

    size_t i = x / 32;
    size_t j = x % 32;

    return _bits[i] & (1 << j); // 返回第 j 位的值
}

解释:_bits[i] & (1 << j);

注意:这一步为何没有&= 而是 & ,因为该函数只是想看某一位为什么,不能改变该位!

 返回值:若 _bits[i] 的第 j 位为 1,返回 true;否则返回 false。

Q:为什么能判断某一位是否为 1?


A:& 运算后,只有第 j 位可能非0(因为其他位都是 0)。

如果结果 ≠ 0 → 说明 _bits[i] 的第 j 位是 1(返回 true)。

如果结果 = 0 → 说明 _bits[i] 的第 j 位是 0(返回 false)。

四:位图总代码及测试

①:总代码

#pragma once
#include<assert.h>

namespace bit
{
	template<size_t N>
	class bitset
	{
	public:
		bitset()
		{
			_bits.resize(N/32+1, 0);
			//cout << N << endl;
		}

		// 把x映射的位标记成1
		void set(size_t x)
		{
			assert(x <= N);

			size_t i = x / 32;
			size_t j = x % 32;

			_bits[i] |= (1 << j);
		}

		// 把x映射的位标记成1
		void reset(size_t x)
		{
			assert(x <= N);

			size_t i = x / 32;
			size_t j = x % 32;

			_bits[i] &= ~(1 << j);
		}

		bool test(size_t x)
		{
			assert(x <= N);

			size_t i = x / 32;
			size_t j = x % 32;

			return _bits[i] & (1 << j);
		}
	private:
		vector<int> _bits;
	};
}

②:测试代码

    void test_bitset()
	{
		bitset<100> bs1;
		bs1.set(50);
		bs1.set(30);
		bs1.set(90);

		for (size_t i = 0; i < 100; i++)
		{
			if (bs1.test(i))
			{
				cout << i << "->" << "在" << endl;
			}
			else
			{
				cout << i << "->" << "不在" << endl;
			}
		}
		bs1.reset(90);
		bs1.set(91);

		cout << endl << endl;

		for (size_t i = 0; i < 100; i++)
		{
			if (bs1.test(i))
			{
				cout << i << "->" << "在" << endl;
			}
			else
			{
				cout << i << "->" << "不在" << endl;
			}
		}

预期效果:100个位中  第一次打印:50 30 90 位值为1;第二次打印:50 30 91 为1;

运行效果:

符合预期! 

五:位图相关题目

了解了biset的相关实现后,用库中的bitset做几道题目吧~

①:双位图找只出现一次的数字

  • 场景:从数组中找出所有只出现一次的数字(类似“单身狗”问题)。

  • 数组:int a[] = { 5,7,9,2,5,99,5,5,7,5,3,9,2,55,1,5,6 };

  • 解决:用 two_bit_set(双位图)记录每个数字的状态:

    • 10:出现多次。

    • 01:出现一次。

    • 00:未出现。

    • 遍历数组后,输出状态为 01 的数字。

    •  two_bit_set(双位图)的成员变量就是两个位图即可

代码:

#include<iostream>
#include <bitset>
using namespace std;

// 双位图:独立类,组合两个bitset
template<size_t N>
class two_bit_set
{
public:
	void set(size_t x)
	{
		if (!_bs1.test(x) && !_bs2.test(x))
		{
			_bs2.set(x);  // 00 → 01
		}
		else if (!_bs1.test(x) && _bs2.test(x))
		{
			_bs1.set(x);  // 01 → 10
			_bs2.reset(x);
		}
		// 10 → 10(无需处理)
	}
	bool test(size_t x)
	{
		if (_bs1.test(x) == false
			&& _bs2.test(x) == true)
		{
			return true;
		}

		return false;
	}

private:
	bitset<N> _bs1;  // 高位
	bitset<N> _bs2;  // 低位

};
void test_bitset2()
{
	int a[] = { 5,7,9,2,5,99,5,5,7,5,3,9,2,55,1,5,6 };
	two_bit_set<100> bs;
	for (auto e : a)
	{
		bs.set(e);
	}

	for (size_t i = 0; i < 100; i++)
	{
		//cout << i << "->" << bs.test(i) << endl;
		if (bs.test(i))
		{
			cout << i << endl;
		}
	}
}


int main()
{
	test_bitset2();

	return 0;
}

②:求两个数组的交集

  • 场景:找出两个数组中共同存在的数字。

  • 两个数组:int a1[] = { 5,7,9,2,5,99,5,5,7,5,3,9,2,55,1,5,6 }; int a2[] = { 5,3,5,99,6,99,33,66};

  • 解决

    • 用两个 bitset 分别标记两个数组的数字。

    • 遍历所有数字,输出在两个位图中均为 1 的数字。

代码:

void test_bitset3()
{
	int a1[] = { 5,7,9,2,5,99,5,5,7,5,3,9,2,55,1,5,6 };
	int a2[] = { 5,3,5,99,6,99,33,66 };

	bitset<100> bs1;
	bitset<100> bs2;

	for (auto e : a1)
	{
		bs1.set(e);
	}

	for (auto e : a2)
	{
		bs2.set(e);
	}

	for (size_t i = 0; i < 100; i++)
	{
		if (bs1.test(i) && bs2.test(i))
		{
			cout << i << endl;
		}
	}
}
int main()
{
	test_bitset3();

	return 0;
}

运行结果:

此时回到最开始的问题:

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中?

思路:

1:用库中的位图开辟40亿个位出来

2:读取题目给的数据,把40亿个整形对应的位置为1

3:然后在看待查询的数对应的位是否为1即可

代码无法写出来,因为没有这个庞大的数据,但是可以了解一下40亿位如何开辟

        bitset<-1> bs2;
		bitset<UINT_MAX> bs3;
		bitset<0xffffffff> bs4;

解释:

1. bitset<-1> bs2

  • 模板参数 size_t N 接受 -1 时会发生隐式转换

  • -1 转换为 size_t 类型会变成最大值(即 2³²-1

2:bitset<UINT_MAX> bs3

标准定义:

  • UINT_MAX 是 <climits> 中定义的无符号整数最大值

  • 标准值:4,294,967,295(即 2³²-1

3:bitset<0xffffffff> bs4

十六进制解析:

  • 0xffffffff = 4,294,967,295(即 2³²-1

  • 完全等价于 bitset<UINT_MAX>

4:bitset<4294967296> bs1;

记得住数字 也可以这样

③:一些位图解题的思想

Q:1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数?

A:如果内存不够,分批次读是不可靠的,因为有可能在不同的批次中都出现了一次,加起来就超过了题目要求;假设要题目数据总大小1g(1024),但我们只有512MB;此时我们先读整数范围前半部分的值  再读范围为后半部分的值,先读0~2^31  再读2^31~2^31-1的范围即可。

所以空间再小一点都可以,只是要将范围分细一点罢了
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值