假设我们的数据集有三个样本,三个特征分别是
[0.3, 0.3, 0.4], [0.3, 0.4, 0.3], [0.1, 0.2, 0.7]
对应的标签是
[0, 0, 1], [0, 1, 0], [1, 0, 0]
在pytorch.nn.MSEloss中,计算的顺序是这样的
1_loss = (0.3-0)^2 + (0.3-0)^2 + (0.4-1)^2 = 0.54
2_loss = (0.3-0)^2 + (0.4-1)^2 + (0.2-0)^2 = 0.54
3_loss = (0.1-1)^2 + (0.2-1)^2 + (0.7-0)^2 = 1.34
sample_loss = (1_loss + 2_loss + 3_loss)/ 3 = 0.18 (这个3,表示每个样本有三个特质,sample_loss表示3个样本加起来之后平均每个特征的误差)
MSEloss = sample_loss / 3 = 0.2689 (这个3表示三个样本)
import torch
a = torch.tensor([[0.3, 0.3, 0.4], [0.3, 0.4, 0.3], [0.1, 0.2, 0.7]])
x = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=float)
criterion1 = torch.nn.MSELoss()
print(criterion1(a, x))
# 输出结果是:tensor(0.2689, dtype=torch.float64)