pytorch多特征数据的MSEloss计算

本文详细解析了PyTorch中MSE损失函数的计算过程,通过实例演示了如何使用MSEloss模块来评估预测值与真实标签之间的差异,特别关注了在多标签分类任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设我们的数据集有三个样本,三个特征分别是

[0.3, 0.3, 0.4], [0.3, 0.4, 0.3], [0.1, 0.2, 0.7]

对应的标签是

[0, 0, 1], [0, 1, 0], [1, 0, 0]

在pytorch.nn.MSEloss中,计算的顺序是这样的

1_loss = (0.3-0)^2 + (0.3-0)^2 + (0.4-1)^2 = 0.54

2_loss = (0.3-0)^2 + (0.4-1)^2 + (0.2-0)^2 = 0.54

3_loss = (0.1-1)^2 + (0.2-1)^2 + (0.7-0)^2 = 1.34

sample_loss = (1_loss + 2_loss + 3_loss)/ 3 = 0.18 (这个3,表示每个样本有三个特质,sample_loss表示3个样本加起来之后平均每个特征的误差) 

MSEloss = sample_loss / 3 = 0.2689 (这个3表示三个样本)

import torch


a = torch.tensor([[0.3, 0.3, 0.4], [0.3, 0.4, 0.3], [0.1, 0.2, 0.7]])
x = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=float)


criterion1 = torch.nn.MSELoss()
print(criterion1(a, x))

# 输出结果是:tensor(0.2689, dtype=torch.float64)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值