给定一个正整数 n ,输出外观数列的第 n 项。
「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。
你可以将其视作是由递归公式定义的数字字符串序列:
countAndSay(1) = "1"
countAndSay(n) 是对 countAndSay(n-1) 的描述,然后转换成另一个数字字符串。
目录
思路一:递归
char * countAndSay(int n){
if(n==1)return "1";
char *last = countAndSay(n-1);
int len = strlen(last);
int l = 2*len+1;
char *ret = (char*)malloc((l)*sizeof(char));
for(int i=0;i<l;i++){
ret[i] = 0;
}
int k=0,m=1;
for(int i=1;i<len;i++){
if(last[i] == last[i-1]){
m++;
}else{
ret[k] = m+'0';
ret[k+1] = last[i-1];
k += 2;
m=1;
}
}
ret[k] = m+'0';
ret[k+1] = last[len-1];
return ret;
}
分析:
利用递归将问题转化为从一开始进行判断,即有一个1,有两个1,有一个2两个1这样不断向后操作的模式,接着将需要判断的字符串用循环不断查找有几个数字,再存储到一个新的字符串中。最后输出正确答案
总结:
本题需要将问题从头开始向后递推,故采用了递归的方法,将解决问题的方法照问题的推理逻辑进行解决。