引言
人工智能(AI)技术在芯片设计领域展现出了巨大的潜力,尤其是在解决时钟(clocks)、单元库选择(library cell selection)、设计技术协同优化(DTCO)、IR压降(IR drop)、功耗(power)、布局规划(floorplan)、电压缩放(V-scaling)和存储器配置(memory config)等复杂问题方面。AI不仅帮助我们重新思考这些问题,还使得能够解决的问题规模越来越大、复杂度越来越高。本文将深入探讨这一趋势,并介绍EDA供应商在这一领域的进展。
AI在芯片设计中的应用趋势
1. 时钟设计
时钟设计是芯片设计中的关键环节,它直接影响着芯片的性能和稳定性。AI通过机器学习算法,能够对时钟树的结构进行优化,预测时钟信号的传播延迟和抖动,从而帮助设计人员快速找到最优的时钟设计方案。例如,一些AI模型可以基于历史设计数据,自动调整时钟树的分支结构,以减少时钟偏移并提高时钟信号的质量。
2. 单元库选择
在芯片设计中,选择合适的单元库对于实现高性能和低功耗至关重要。AI可以根据设计需求和工艺条件,自动从大量的单元库中筛选出最适合的单元。它通过对单元的电气特性、面积和功耗等参数进行分析,结合设计的具体要求,如频率、功耗预算等,快速确定最佳的单元库组合,大大提高了设计效率。
3. 设计技术协同优化(DTCO)
DTC