引言
自动驾驶系统作为人工智能与汽车工程的前沿交叉领域,融合了计算机视觉、传感器融合、控制理论、机器学习等多学科知识。本文将深入剖析其核心处理流程:从传感器数据采集,到特征提取、路径规划,再到最终的控制指令生成,通过数学公式推导和代码实现,全面揭示自动驾驶系统背后的技术细节,为读者呈现一幅自动驾驶技术的全景图。
一、传感器数据预处理:多源数据的整合与优化
1.1 多模态传感器输入:构建车辆的“感知矩阵”
自动驾驶车辆通常配备多种传感器,以全方位感知周围环境。这些传感器包括:
- 激光雷达:获取3D点云数据,精度可达±2cm,为车辆提供高精度的深度信息,用于障碍物检测、道路边界识别等。
- 摄像头:捕捉RGB图像,分辨率通常为1920×1080@30FPS,通过计算机视觉算法识别交通标志、车道线、行人等。
- 毫米波雷达:测量物体速度,精度0.1m/s,对车辆的运动状态感知至关重要。
# 传感器数据模拟