如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92
2
=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK
2
的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
while(n--){
int t;
cin>>t;
int flag=0;
string s = to_string(t);
t=t*t;
for(int i=1; i<10; i++){
int x = t*i;
int r;
string ss = to_string(x);
r = ss.find(s);
if(r==ss.length()-s.length()){
cout<<i<<" "<<ss<<endl;
flag=1;
break;
}
}
if(flag==0)
cout<<"No"<<endl;
}
return 0;
}