历史事件
众所周知,SPFA是一种对Bellman-Ford算法的优化。国内业界首次提出是1994年西南交通大学的段凡丁在学报上发表的论文。但实际上早在1956年Bellman-Ford算法提出的论文里已经提到了用类似bfs的队列方式松弛,之后国外也有人用过。段凡丁只是起了个名字。另外,这篇论文漏洞很多(作者自己的观点几乎全是错的),而且作者思考比较简单(应该是限于当时国内的业界水平,因为从段老师后期的著作看,他挺厉害的)。所以没人承认SPFA是段凡丁提出的。国内第一次清晰正确提出的SPFA算法应该是2009年,中山纪念中学一位姜同学的国家集训队论文。但他毕竟是个高中生,写论文功力不太成熟。目前写的比较严谨的是华东师大可信实验室的SPFA论文。这些论文想读都可以直接百度搜到。
Bellman-Ford算法简述和证明
- 设图有n个点,m条边。
- SPFA的理论基础是 Bellman-Ford算法。Bellman-Ford算法的理论依据是每个边最多被松弛n-1次,否则有负权环。
- 代码:
int Bellman_Ford(int x){
for(int i=1;i<=n;i++){dist[i]=oo;}
dist[x]=0;
for(int i=1;i<n;i++){
for(int j=1;j<=m;j++)
if(dist[e[j].y]>dist[e[j].x]+e[j].w)
dist[e[j].y]=dist[e[j].x]+e[j].w;
}
for(int j=1;j<=m;j++)
if(dist[e[j].y]>dist[e[j].x]+e[j].w)return -1;
return 1;
}
- 证明每个边最多被松弛n-1次,否则有负权环。如果源点到点x有最短路,路径经过的点数有限,那么路径经过边数数最多是n。所以只要证明源点到某点x的最短路径path,在 l e n ( p a t h ) len(path) len(path)轮松弛后一定能浮现出来。其中 l e n ( p a t h ) len(path) len(path)是最短路径path所包含的边数。
- 这个用数学归纳法就行:首先源点在0轮就已经确定了(最短路直接是0),所以len=0时,0轮确定。如果第i轮松弛确定了path上y点的最短路 p a t h y path_y pathy, p a t h y path_y pathy点数 l e n ( p a t h y ) = i len(path_y)=i len(pathy)=i。那么根据上面的代码,对 p a t h path path上的y下一个点x, e d g e ( x , y ) edge(x,y) edge(x,y)在第i+1轮一定会被做松弛判断。所以x的最短路在第i+1轮一定被搜到,且 l e n ( p a t h x ) = i + 1 len(path_x)=i+1 len(pathx)=i+1。
- 所以一个边数为 l l l的最短路,在 l l l轮松弛后一定会被搜到。
- 而所有最短路经过的边数最多n-1,所以算法是对的。
- 如果n-1轮松弛后还边能松弛,那说明最短路经过的边数是无限的,有负权环。
- 这种算法虽然复杂度是O(nm)比迪杰斯特拉慢,但是可以跑有负权边的图,还能判断负环。
SPFA的正确代码
- SPFA和Bellman-Ford原理一样,只是有条理地改变了松弛顺序。每次从队头取个点,松弛它的相邻点。每个点被松弛(重新进队)的次数至多是源点到它的最短路的边数,证明方法还是数学归纳法,和上面的Bellman-Ford没啥区别。
- 一旦发现哪个点松弛到了n次,就说明有负环。
- 正确代码:
int spfa(int x){
for(int i=1;i<=n;i++){dist[i]=oo;inq[i]=0;}
dist[x]=0;
int head=1,tail=0;
q[++tail]=x;
inq[s]=1;
while(head<=tail){
int cur=q[head];
int sz=con[cur].size();
for(int i=0;i<sz;i++){
edge NE=e[con[cur][i]];
if(dist[NE.x]+NE.w<dist[NE.y]){
dist[NE.y]=dist[NE.x]+NE.w;
cunt[NE.y]++;
if(cunt[NE.y]>=n)return -1;
if(!inq[NE.y]){
q[++tail]=NE.y;inq[NE.y]=1;
}
}
}
head++;
inq[cur]=0;
}
return 1;
}
段凡丁的贡献
段凡丁的论文理论根基都是不对的。
- 段凡丁的spfa算法:
这个算法并没有判负环的机制。有负环就停不下来了。再看看段凡丁对于spfa正确性的证明。 - 段凡丁论文里的spfa正确性证明分成两部分:一定能找到最短路;还有算法能在有限次后收敛在最短路这两部分。
作者给出的这个正确性证明就他的算法来说是正确的。这给了后人很大的启发,他做的事情是极其重要的,尽管他并没有想的足够深入。先不提他错误的复杂度,从他的代码和证明来看,他当时并没有想到每个点至多入队n-1次,没有想到负环的情况。所以他的代码在有负环时就停不下来了。再来看看他“’硬核”的复杂度分析:
这个就是作者主观臆断了。凭一堆实验就强行断定复杂度,而没有理论支撑,显然是不行的。可以构造图,把SPFA的复杂度卡成O(nm)。到这里段老师写论文的心态大概是:段老师读了一些图论的论文,受到一些启发,总结可以跑负权图的单源最短路算法,取名SPFA。然后复杂度有些精妙不太好理论分析,做了大量随机(至少没有针对性)实验后就主观断定复杂度O(m),这是理论最好复杂度。所以兴奋地认为找到了比迪杰斯特拉跑的还快,适用范围还更广的算法。所以就写了这篇论文。但不可否认的是,这给后来的中国学者提供了宝贵的经验,在1994年是难能可贵的。
正确复杂度分析
实际上,SPFA算法的最坏复杂度是θ(nm)的。
-
算法复杂度是O(nm)很好理解,因为根据算法,每次取队头判断松弛的次数最多是n-1=O(n)。最多去多少次队头呢?这就是队列的累计总长度。最坏的是:每个点被他所有入度都松弛一次而入队,这样队列长度最大一共m。所以O(nm)是成立的。实际上现实中这两种最大情况不会发生。
-
下面构造最坏的情况,使得复杂度是 θ ( n m ) θ(nm) θ(nm):
- 这个图构造方法:
源点是1。
i到i+1有长度1的边。
1到i(3<=i<=n)分别有2*i+1的边。
i(3=<i<=n)到 j(1<=j<=i-2)有+oo的边。
-
所以模拟算法过程,首先i会被直接与源点相连那条边搜到,然后就是前面的点i-1出队一次,i被松弛入队一次。所以: n u m P o p ( i ) = n u m P o p ( i − 1 ) + 1 , n u m P o p ( 1 ) = 1 numPop(i)=numPop(i-1)+1,numPop(1)=1 numPop(i)=numPop(i−1)+1,numPop(1)=1
所以从1~n每个点的出队次数是:
1 , 2 , 3 , 4 , . . . , i , . . . , n 1,2,3,4,...,i,...,n 1,2,3,4,...,i,...,n每次出队会扫描一遍出度,1~n的出度依次是:
n − 1 , 1 , 2 , 3 , . . . , ( i − 1 ) , . . . n − 2 , n − 2 n-1,1,2,3,...,(i-1),...n-2,n-2 n−1,1,2,3,...,(i−1),...n−2,n−2所以总判断松弛次数是
T = ∑ i = 1 n ( i − 1 ) ∗ i T=\sum_{i=1}^{n}(i-1)*i T=i=1∑n(i−1)∗i
注:严格按上面的规律求出的结果和上面求和公式有O(n)级别的差值(有头尾特殊的几个和别的规律不太一样),不影响复杂度计算,忽略不计了。
T = ∑ i = 1 n ( i − 1 ) ∗ i = ∑ i = 1 n i ∗ i − ∑ i = 1 n i = n ( n + 1 ) ( 2 n + 1 ) 6 − n ( n + 1 ) 2 = θ ( n 3 ) T=\sum_{i=1}^{n}(i-1)*i=\sum_{i=1}^{n}i*i-\sum_{i=1}^{n}i\\=\\\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}=θ(n^3) T=i=1∑n(i−1)∗i=i=1∑ni∗i−i=1∑ni=6n(n+1)(2n+1)−2n(n+1)=θ(n3)
而这个图里m是 O ( n 2 ) O(n^2) O(n2)的。所以复杂度是θ(mn)的。
另外,SPFA实际跑起来不一定比Bellman-Ford快。 - 这个图构造方法:
-
一道题的比较。我随便找了到最短路的题写了一发,结果如下:
- SPFA的时间:
- Bellman-Ford的时间:
- 整体来看两者差不多,但是Bellman-Ford好像快一些。。。
-
以上就是我知道的所有的内容了。