P8604 [蓝桥杯 2013 国 C] 危险系数
题目背景
抗日战争时期,冀中平原的地道战曾发挥重要作用。
题目描述
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数 DF(x,y)DF(x,y):
对于两个站点 xx 和 y(x\neq y),y(x=y), 如果能找到一个站点 zz,当 zz 被敌人破坏后,xx 和 yy 不连通,那么我们称 zz 为关于 x,yx,y 的关键点。相应的,对于任意一对站点 xx 和 yy,危险系数 DF(x,y)DF(x,y) 就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含 22 个整数 n(2 \le n \le 1000)n(2≤n≤1000),m(0 \le m \le 2000)m(0≤m≤2000),分别代表站点数,通道数。
接下来 mm 行,每行两个整数 u,v(1 \le u,v \le n,u\neq v)u,v(1≤u,v≤n,u=v) 代表一条通道。
最后 11 行,两个数 u,vu,v,代表询问两点之间的危险系数 DF(u,v)DF(u,v)。
输出格式
一个整数,如果询问的两点不连通则输出 -1−1。
输入输出样例
输入 #1
7 6 1 3 2 3 3 4 3 5 4 5 5 6 1 6
输出 #1
2
题解:
需要用dfs遍历所有点并记录节点经过的次数,如果节点经过次数与总次数相同,则说明该节点是关键节点。
#include<iostream>
#include<vector>
using namespace std;
vector <int> M[3000];
int a, b;
bool jilu[3000];
int jilucishu[3000];
int st, ed, cishu;
void dfs(int x) {
jilu[x] = 1;
if (x == ed) {
cishu++;
for (int e = 1; e <= a; e++) {
if (jilu[e] == 1) {
jilucishu[e]++;
}
}
jilu[x] = 0;
return;
}
for (int e = 0; e < M[x].size(); e++) {
int abc = M[x][e];
if (!jilu[abc]) {
dfs(abc);
jilu[abc] = 0;
}
}
return;
}
int main() {
cin >> a >> b;
for (int e = 0; e < b; e++) {
int x, y;
cin >> x >> y;
M[x].push_back(y);
M[y].push_back(x);
}
cin >> st >> ed;
dfs(st);
int ans = 0;
for (int e = 1; e <= a; e++) {
if (jilucishu[e] == cishu) {
ans++;
}
}
if (ans == 0) {
ans = -1;
}
else {
ans -= 2;
}
cout << ans;
system("pause");
return 0;
}
P3916 图的遍历
题目描述
给出 NN 个点,MM 条边的有向图,对于每个点 vv,求 A(v)A(v) 表示从点 vv 出发,能到达的编号最大的点。
输入格式
第 11 行 22 个整数 N,MN,M,表示点数和边数。
接下来 MM 行,每行 22 个整数 U_i,V_iUi,Vi,表示边 (U_i,V_i)(Ui,Vi)。点用 1,2,\dots,N1,2,…,N 编号。
输出格式
一行 NN 个整数 A(1),A(2),\dots,A(N)A(1),A(2),…,A(N)。
输入输出样例
输入 #1
4 3 1 2 2 4 4 3
输出 #1
4 4 3 4
题解:
从后往前建图,否则会超时,把尾端最大值的大小赋值给前面的节点,并每个点都遍历一次,如果经过过了就跳过
#include<iostream>
#include<vector>
using namespace std;
bool vis[100001] = {0};
vector <int> M[100001];
int n, m, op, ed, jilu[100001] = { 0 }, zuida;
void dfs(int x)
{
for (int i = 0; i < M[x].size(); i++)
{
int to = M[x][i];
if (vis[to] == false)
{
vis[to] = true;
jilu[to] = zuida;
dfs(to);
}
}
}
int main()
{
cin >> n >> m;
for (int i = 0; i < m; i++)
{
cin >> ed >> op;
M[op].push_back(ed);
}
for (int i = n; i > 0; i--)
{
if (vis[i] == true)
{
continue;
}
zuida = i;
jilu[i] = zuida;
vis[i] = true;
dfs(i);
}
for (int i = 1; i <= n; i++)
{
cout << jilu[i];
if (i != n)
{
cout << ' ';
}
}
}
P1330 封锁阳光大学
题目描述
曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。
阳光大学的校园是一张由 nn 个点构成的无向图,nn 个点之间由 mm 条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。
询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。
输入格式
第一行两个正整数,表示节点数和边数。 接下来 mm 行,每行两个整数 u,vu,v,表示点 uu 到点 vv 之间有道路相连。
输出格式
仅一行如果河蟹无法封锁所有道路,则输出 Impossible
,否则输出一个整数,表示最少需要多少只河蟹。
输入输出样例
输入 #1
3 3 1 2 1 3 2 3
输出 #1
Impossible
题解:
用bfs遍历所有点,对经过的节点轮流赋值1和-1,如果相邻的两个端点数字相同,则说明不能封锁,最后判断1和-1的数量,最少的即为最少河蟹数
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int n, m, aa[10005], ans = 0;
bool panduan[10005];
vector<int>M[10005];
queue<int> N;
int main() {
cin >> n >> m;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
M[x].push_back(y);
M[y].push_back(x);
}
for (int i = 1; i <= n; i++) {
int a = 0, b = 0;
if (!panduan[i] && !M[i].empty()) {
N.push(i);
aa[i] = 1;
while (!N.empty()) {
int now = N.front();
N.pop();
if (aa[now] == 1) a++;
else if (aa[now] == -1) b++;
panduan[now] = true;
for (int i = 0; i < M[now].size(); i++) {
int to = M[now][i];
if (panduan[to]) {
if (aa[to] == aa[now]) {
cout << "Impossible";
return 0;
}
}
else {
N.push(to);
aa[to] = -aa[now];
}
}
}
}
ans += min(a, b);
}
cout << ans;
return 0;
}