软阈值函数学习笔记:理论推导、案例解析、代码

本文详细介绍了软阈值函数的理论推导,旨在帮助初学者理解其工作原理,避免被网上零散的信息误导。推导过程仅需高中和大学一年级的数学知识。文章批评了一些现有资源的不足,并分享了一篇有影响力的博客,同时指出该博客中关于软阈值函数矩阵形式的观点值得探讨。此外,作者鼓励读者亲手推导公式以加深理解,提供了联系方式和参考文献供进一步学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感想:

    与软阈值函数相关的博文,各大网站多如牛毛。然而,详解的文章却不多,大都是摘抄、拼凑,有的只有几个公式,有的只是写段代码,就草草了事。这给初学者来带来了很大困扰。初学者对软阈值函数知之甚少,抱着学习的精神,猛看这些博文,却被这些博文误导得颇深,被迷惑得很严重,平添许多烦闷。本文通过呈现详细的推导过程,让初学者能够不仅知其然,还能知其所以然。

    实际上,软阈值函数的推导过程其实很简单,只用到了高中一年级二次函数和大学一年级函数连续的知识。然而,如此简单的方法,却鲜见于最优化理论相关的书籍、视频教程中。

    在我初学软阈值函数时,文献[6]给了我很大的帮助,在此太感谢这位博主。他的博文在结论处写道:软阈值是各种算法的基础,根本没法子绕过去的,这也是我的切身体会,读者应予以重视。但是对于他的博文中给出的软阈值的矩阵形式,我认为不十分合理,值得商榷。

    文章在网页上是图片格式,这为读者的二次编辑带来了些许不变。对此,非常抱歉。一方面软阈值推导过程中的公式较多,word文档上传至网页后,很容易出现乱码,影响阅读。另一方面,该博文是原创文章,作者保留了底稿。手机端阅读,屏幕太小的原因,体验并不好,建议读者在电脑端阅读,一支笔,一打草稿纸,遇到不理解的地方,自己试着独立推导,这样会加深理解。

文章有误的地方,欢迎联系我一起共同讨论,我的邮箱地址为:3173922044@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值