Libsvm使用说明

SVM的使用
为什么写这个指南
我一直觉得 SVM 是个很有趣的东西,不过一直沒办法去听林智仁老師 的 Data mining与SVM的课,后来看了一些Internet上的文件,后来听 kcwu 讲了一下 libsvm的用法后,就想整理一下,算是对于并不需要知道完整 SVM 理论的人提供使用libsvm 的入门。 原始 libsvm 的README跟FAQ也是很好的文件, 不过你可能要先对 svm 跟流程有点了解后才看得懂 (我在看时有这样的感觉);这篇入门就是为了从零开始的人而写的。
不过请记得底下可能有些说法不一定对,但是对于只是想用 SVM 的人来说我觉得这样说明会比较易懂。这篇入门原则上是给会写基本程序的人看的,也是给我自己一个备忘, 不用太多数学底子,也不用对 SVM 有任何预备知识。
SVM:什么是SVM,它能为我们做什么?
SVM, Support Vector Machine ,  简而言之它是个起源与人工神经网络有点像的东西,現今最常拿来就是做分类。也就是说,如果我有一堆已经分好类的东西(可是分类的依据是未知的),那当收到新的东西时,SVM可以預测新的数据要分到哪一堆去。听起来是很神奇的事(如果你觉得不神奇,请重想一想这句话代表什么:分类的依据是未知的!,还是不神奇的话就请你写个程序,解解上面的问題),不过 SVM基于统计学习理论的,可以在合理的时间內漂亮的解决这个问題。
以图形化的例子来说明 , 假定我在空间中标了一堆用顏色分类的点, 点的顏色就是它的类別, 位置就是它的数据, 那 SVM 就可以找出区隔这些点的程序, 依此就可以分出一个个的区域; 拿到新的点(数据) 时, 只要对照该位置在哪一区就可以找出它应该是哪一顏色(类別)了。当然 SVM 不是真的只有分区那么简单, 不过看上面的例子应该可以了解 SVM 大概在作什么. 要对 SVM 再多懂一点点,可以参考 cjlin 在 data mining 课的 slides: pdf 或 ps 。我们可以把 SVM 当个黑盒子, 数据丟进去让他处理然后我们再来用就好了.
哪里得到SVM?
libsvm  当然是最完美的工具.下載处: libsvm.zip 或者 libsvm.tar.gz
.zip 跟 .tar.gz 基本上是一样的, 只是看你的操作系统; 习惯上 Windows 用 .zip比较方便 (因为有WinZIP, 也有WinRAR), UNIX 则是用 .tar.gz
编译libsvm
解开来后, 假定是UNIX 系统, 直接打 make 就可以了; 编不出来的话请详读说明和运用常识. 因为这是指南, 所以我不花时间细谈, 而且编不出来的情形真是少之又少,通常一定是你的系统有问題。 其他的子目录可以不管, 只要 svm-train, svm-scale, svm-predict 三个执行文件有就可以了. Windows 的用戶要自己重编当然也是可以,不过已经有编好的执行文件在里面了: 请检查 windows 子目录, 应该会有svmtrain.exe, svmscale.exe, svmpredict.exe, svmtoy.exe.
libsvm  有很多种用法 ,  这篇指南只打算讲简单的部分 .
程序
svmtrain
训练 数据 .  SVM 称为  " 开火車 "  也是由于这个程序名而来 . train 会接受特定格式的输入 ,  产生一个  "Model"  文件 .  这个  model  你可以想像成 SVM 的內部数据 , 因为 预测 model 才能 预测 ,  不能直接吃原始数据 . 想想也很合理 , 假定  train  本身是很耗时的动作 ,    train 可以以某种形式存起內部数据 , 那下次要 预测 时直接把那些內部数据 载入 就快多了 .
svmpredict
依照已经 训练 好的  model,  再加上给定的输入 ( 新值 ),  输出預测新值所对应的类別 .
svmscale
扫描数据 .  因为原始数据可能范围过大或过小 , svmscale  可以先将数据重新 scale ( 縮放 )  到适当范围 使训练与预测速度更快。
文件 格式要先交代一下 .  你可以参考  libsvm  里面附的  "heart_scale":  这是SVM 的输入文件格式.
[label]  [index1]:[value1] [index2]:[value2] ...
[label]  [index1]:[value1] [index2]:[value2] ...
一行一 条记录 数据,如 :
+1 1:0.708 2:1 3:1 4:-0.320 5:-0.105 6:-1
label
或说是 class,  就是你要分类的种类,通常是一些整数。
index
是有順序的索引,通常是连续的整数。
value
就是用来  train  的数据,通常是一堆实数。
每一行都是如上的結构 ,  意思就是 :  我有一排数据 ,  分別是  value1, value2, .... value, ( 而且它们的順序已由  index  分別指定 ) ,这排数据的分类結果就是 label
或許你会不太懂,为什么会是  value1,value2,....  这样一排呢? 这牵涉到  SVM  的原理。你可以这样想(我沒说这是正确的),它的名字就叫  Support "Vector" Machine ,所以输入的 训练数据   "Vector"( 向量 ),  也就是一排的  x1, x2, x3, ...  这些值就是  value ,而  x[n]  n 就是由 index  指定。这些东西又称为  " (属性) attribute"
真实的情况是,大部份时候我们给定的数据可能有很多  " 特征 (feature)"  或说  " 属性 (attribute)" ,所以输入会是一组的。举例来说,以前面 点分区的例子  来说,我们不是每个点都有  X    Y  坐标 吗?所以它就有两种 属性 。假定我有两个点:  (0,3)  (5,8)  分別在  label(class) 1    2  ,那就会写成
1 1:0 2:3
2 1:5 2:8
同理,空间中的三維坐标就等于有三组 属性 这种文件格式最大的好处就是可以使用 稀疏矩阵(sparse matrix) , 或说有些  数据 属性 可以 有缺失
运行libsvm
来解释一下 libsvm  的程序怎么用。 你可以先拿  libsvm  附的 heart_scale  来做输入,底下也以它为例:
看到这里你应该也了解,使用  SVM  的流程大概就是:
1.  准备数据并做成指定 格式 ( 有必要时需  svmscale)
2.  svmtrain  训练   model
  1. 对新的输入,使用 svmpredic预测新数据的类别.
svmtrain
svmtrain  的语法大致就是 :
svmtrain [options] training_set_file [model_file]
training_set_file  就是之前的格式,而  model_file  如果不给就会 叫 [training_set_file].model   options  可以先不要给。
下列程序执行結果会产生  heart_scale.model  文件: ( 螢幕输出不是很重要,沒有错誤就好了 )
./svmtrain heart_scale
optimization finished, #iter = 219
nu = 0.431030
obj = -100.877286, rho = 0.424632
nSV = 132, nBSV = 107
Total nSV = 132
svmpredict
svmpredict  的语法是  :
svmpredict  test_file   model_file   output_file
test_file  就是我们要 预测 的数据。它的格式跟  svmtrain  的输入,也就是 training_set_file  是一样的, 不过每行最前面的  label  可以省略  ( 因为预测就是要预测那个  label) 。但如果  test_file    label  的值的话,  predict  完会順便拿  predict  出来的值跟  test_file  里面写的值去做比对,这代表:  test_file  写的 label 是真正的分类結果,拿来跟我们预测的結果比对就可以知道预测的效果。所以,我们可以拿原  training set  当做  test_file 再丟给  svmpredict  去预测 ( 因为格式一样 ) ,看看正确率有多高,方便后面调参数。其它参数就很好理解了:  model_file 就是  svmtrain  出来的文件, output_file 是存输出結果的文件案。输出的格式很简单,每行一个  label ,对应到你的  test_file  里面的各行。下列程序执行結果会产生  heart_scale.out
./svm-predict heart_scale heart_scale.model heart_scale.out
Accuracy = 86.6667% (234/270) (classification)
Mean squared error = 0.533333 (regression)
Squared correlation coefficient = 0.532639(regression)
我们把原输入丟回去  predict ,第一行的  Accuracy  就是預测的正确率了。如果输入沒有 label  的话,那就是真的 预测 了。看到这里,基本上你应该已经可以利用  svm  来作事了:你只要写程序输出正确格式的数据,交给  svm    train ,后来再  predict  并读入結果即可。
Advanced Topics
后面可以说是一些稍微进阶的部份,我可能不会讲的很清楚,因为我的重点是想表达一些观念和解释一些你看相关文件时很容易碰到的名詞。
Scaling
svm-scale  目前不太好用,不过它有其必要性。因为适当的 扫描 有助于参数的选择 还有解 svm 的速度。 svmscale  会对每个 属性 扫描 。范围用  -l, -u  指定,通常是 [0,1] 或是 [-1,1] 。输出在  stdout 另外要注意的 ( 常常会忘记 )   testing data  training data 要一起扫描 。而  svm-scale  最难用的地方就是沒办法指定  testing data/training data( 不同文件 )  然后一起扫描。
Arguments
前面提到,在 train 的时候可以 使用 一些参数。 ( 直接执行  svm-train  不指定输入文件与参数会列出所有参数及语法说明 )  这些参数对应到原始  SVM  公式的一些参数,所以会影响预测的正确与否。
举例来说,改个  c=10:
./svm-train -c 10 heart_scale
再来预测 ,正确率馬上变成  92.2% (249/270)
Cross Validation
一般而言,  SVM  使用的方式 ( 在决定参数时 ) 常是这样:
1.  先有已分好类的一堆数据
2.  随机 拆成好 几组训练集
  1. 用某组参数去训练并预测別组看正确率
  2. 正确率不够的话,换参数再重复训练/预测
等找到一组不错的参数后,就拿这组参数来建 model 并用来做最后对未知数据的 预测 。这整个过程叫 cross validation  ,也就是交叉比对。在我们找参数的过程中,可以利用  svmtrain  的內建交叉比对功能来帮忙:
-v n: n-fold cross validation
n
  就是要拆成几组,像  n=3  就会拆成三组,然后先拿  1 2 训练并预测  3  以得到正确率; 再来拿  2   3  训练 并预测 1 ,最后  1,3  训练并预测 2 。其它以此类推。 如果沒有交叉比对的话,很容易找到只在特定输入时好的参数。像前面我们  c=10  得到 92.2% ,不过拿  -v 5  来看看:
 ./svm-train -v 5 -c 10 heart_scale
Cross Validation Accuracy = 80.3704%
平均之后才只有  80.37% ,比一开始的  86  还差。
What arguments rules?
通常而言,比较重要的参数是  gamma (-g)    cost (-c)  。而交叉 比对  (-v)  的参数常用 5 cost  預设值是  1, gamma  預设值是  1/k  k  等于输入数据 条数 。那我们怎么知道要用多少来当参数呢?
  TRY 就是 尝试 找比较好的参数值。  Try  参数的过程 用指数 增长 的方式来增加与減少参数的数值,也就是  2^n (2    n  次方 ) 因为有两组参数,所以等于要 尝试 n*n=n^2  次。这个过程是不连续的成长,所以可以 想象 成我们在一个  X-Y  平面上指定的范围內找一群格子点  (grid ,如果你不太明白,想成方格紙或我们把平面上所有整数交点都打个点,就是那样 ) ,每个格子点的  X    Y  经过换算  (   2^x, 2^y)  就拿去当 cost    gamma  的值来 交叉比对 。所以現在你应该懂得  libsvm    python  子目录下面有个  grid.py  是做啥的了:它把上面的过程自动化,在你给定的范围內呼叫 svm-train 去尝试所有的参数值。 grid.py  还会把結果 绘制 出来,方便你尋找参数。  libsvm  有很多跟  python  結合的部份,由此可見  python  是強大方便的工具。很多神奇的功能,像自动登入多台机器去平行跑  grid 等等都是 python 帮忙的。不过  SVM  本身可以完全不需要 python ,只是会比较方便。跑  grid ( 基本上用  grid.py  跑当然是最方便,不过如果你不懂 python 而且觉得很难搞,那你要自己产生参数来跑也是可以的 ) 通常好的范围是 [c,g]=[2^-10,2^10]*[2^-10,2^10] 另外其实  grid  [-8,8]  也很够了。
Regression 衰减)
另一个值得一提的是 regression (衰减) 。简单来说,前面都是拿  SVM  来做分类 , 所以 label 的值都是 离散的数据 、或说已知的固定值。而  regression  则是求 连续 的值、或说未知的值。你也可以说,一般是 二分类问题 ,    regression 是可以預测一个实数。
比如说我知道股市指数受到某些因素 影响 ,  然后我想預测股市 股市的指数就是我们的  label,  那些因素量化以后 变成属性 。以后 收集 那些 属性   SVM  它就会預测出指数 ( 可能是沒出現过的数字 ) ,这就要用  regression 。那 对于开奖的号码 呢?因为都是固定已知的数字,很明显我们应该用一般 SVM 分类 预测    ( 註这是真实的例子  --llwang 就写过这样的东西 )  所以说  label  也要 扫描 ,    svm-scale -y lower upper 但是比较糟糕的情况是 grid.py 支持 regression ,而且 较差对比对  regression  也常常不是很有效。
  总而言之, regression  是非常有趣的东西,不过也是比较 高级 的用法。在这里我们不细谈了,有兴趣的人请再参考 SVM libsvm 的其它文件
尾声
到此我已经简单的说明了  libsvm  的使用方式, 更完整的用法请参考  libsvm  的说明跟  cjlin 的网站 、。对于  SVM  的新手来说,  libsvmtools  有很多好东西。像  SVM for dummies  就是很方便观察 libsvm  流程的东西。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值