苏的专栏

致力于学习计算机视觉、模式识别、机器学习、深度学习相关技术::::希望结识更多同道中人。 QQ:2816568984 微信:Suc1011 ...

LibSvm源码解析~算法

算法流程如下图所示,是2.6版本C-SVC型svm算法实现流程,核函数采用常用的RBF函数。 函数解析算法原理归纳

2017-01-23 17:03:07

阅读数 887

评论数 0

LibSvm使用说明

综述SVM支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。总得来说,SVM就是通过训练得到一个超平面 ,将样本分类,保证被分类的样本中离超平面近的一些点距离超平面距离(几何间隔)最大,这些离超平面近的点叫作支持向量...

2017-01-21 17:31:10

阅读数 1500

评论数 0

转载CSDN博客

转载于:http://blog.csdn.NET/jiangping_zhu/article/details/18044109 作者:包心菜加糯米饭 1、找到要转载的文章,用chrome浏览器打开,右键选择审查元素 2、在chrome中下方的框里找到对应的内容,html脚本中找到对应...

2017-01-19 14:10:26

阅读数 425

评论数 0

SVM通俗导论 之 注释版

支持向量机通俗导论(理解SVM的三层境界) 作者:July 。致谢:pluskid、白石、JerryLead。 说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月。 声明:本文于2012年便早已附上所有参考...

2017-01-19 14:03:22

阅读数 782

评论数 0

运动目标检测 之 GMM背景模型算法

综述原理算法逻辑算法源码

2017-01-05 18:57:06

阅读数 4369

评论数 0

机器学习 之 Hog特征

Hog特征综述背景方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。它是一种能够很好地描述图像局部纹理或边缘的方向密度分布的一种特征。Hog...

2017-01-05 16:11:01

阅读数 1294

评论数 0

机器学习 之 LBP特征

综述:: LBP特征:Local Binary Pattern,局部二值模式特征,是一种用来描述图像局部纹理特征的算子。LBP特征算子计算简单、效果较好,数据量小,因此LBP特征在计算机视觉的许多领域都得到了广泛的应用,LBP特征比较多用于目标检测中。LBP计算出的特征具有灰度不变性和旋转不变性...

2017-01-04 11:23:54

阅读数 3323

评论数 0

Python语法 之 结构与函数

综述:计算机的流程控制主要通过三种结构来控制的:顺序结构,选择结构,循环结构。下面讲述下python语言的这三种结构的语法模式。选择结构并列if语句所谓选择结构就是一个或多个条件判断,及其执行语句组成的代码模块。python的基本if语句的结构模式大致如下:if <判断条件1>: ...

2016-12-23 17:24:55

阅读数 1126

评论数 0

Python语法 之 基本数据类型

数据类型整数int = 20 print int 效果如下: 浮点型float = 6.6 print float效果如下: 字符串字符串可以用单引号,双引号,以及三引号括起来形成字符串,单引号与双引号括起来的用法完全相同,三引号字符串,表示多行的字符串,可以在三引号中自由的使用单引号和双引号...

2016-12-22 11:39:54

阅读数 437

评论数 0

Python语法 之 标识符、运算符、表达式

标识符标识符规则 1、标识符有字母、数字、下划线组成。 2、标识符不能以数字开头。 3、标识符是区分大小写的。 看起来标识符与C语言的规则挺相似的,但是还是有些区别: A~单下划线开头(_foo)的代表不能直接访问的类属性,需通过类提供...

2016-12-21 15:35:17

阅读数 1091

评论数 0

ubuntu系统两台机器互传文件

1、sudo apt-get update: 下载前更新一下源,防止有些包找不到2、sudo apt-get install openssh-server :安装ssh的服务端(默认情况下,ssh客户端也一并安装了)3、sudo apt-get install openssh-client:安装s...

2016-12-21 11:20:39

阅读数 3568

评论数 1

ubuntu各目录含义

/boot/: 启动文件,所有与系统启动有关的文件都保存在这里/boot/grub/:grub引导器相关的配置文件都在这里/dev/:此目录中保存了所有设备文件,例如,使用的分区:/dev/hda,/dev/cdrom 等。/proc/:内核与进程镜像 /mnt/:此目录主要是作为挂载点使用/me...

2016-12-21 10:55:58

阅读数 4831

评论数 0

Ubuntu下的文件比较工具--meld

在ubuntu中自带的文件比较工具:diff在ubuntu中需要比较文件或者文件夹的差异的一个比较好的工具:meldapt-get install meld安装完后,在/usr/bin/下找到meld,然后发送到桌面上, 或者在命令行执行meld命令打开后选择:file->new ,打开文...

2016-12-05 16:56:23

阅读数 1422

评论数 0

ubuntu安装nvidia显卡驱动(双显卡)

下面记录下我的笔记本在系统ubuntu 14.04中安装geforce 920m的nvidia显驱动的经历:::安装nvidia显卡驱动后进入系统黑屏先是在按Ctrl-Alt-F1进入命令行界面,关闭了lightdm的桌面系统,安装nvidia-340驱动,重启后再次进入系统黑屏。(ps:这里我是...

2016-12-01 15:55:28

阅读数 9734

评论数 0

编译cuda-7.5 samples文件报错

在ubuntu 14.04系统中安装cuda-7.5时编译samples文件。进入/usr/local/cuda-7.5/samples/目录用make命令编译,报错如下::: 主要错误:cannot find lnvcuvid解决方法:::: 1、 修改 /usr/local/cuda-7....

2016-12-01 15:39:03

阅读数 3843

评论数 2

vs2008每次打开重新配置环境

vs2008每次打开都要重新配置环境,“Visual Studio is configuring environment for first time use”,导致原来的一些设置不起作用。遇到这个问题的解决方法::::Tools > Options…>Environment>I...

2016-11-29 11:04:37

阅读数 639

评论数 0

caffe源码 之 dropout层

综述:::: dropout层的作用是防止训练的时候过拟合。在训练的时候,传统的训练方法是每次迭代经过某一层时,将所有的结点拿来做参与更新,训练整个网络。加入dropout层,我们只需要按一定的概率(retaining probability)p 来对weight layer 的参数进行随机采样...

2016-11-24 14:29:09

阅读数 3549

评论数 3

caffe源码 之 Relu层

ReLU是近些年非常流行的激活函数。相比于sigmoid与Tanh,它具有一定的优越性,这三者对比可见https://zhuanlan.zhihu.com/p/21462488?refer=intelligentunit,它的函数公式是f(x)=max(0,x)。换句话说,这个激活函数就是一个关于...

2016-11-22 12:26:13

阅读数 2298

评论数 0

python绘制caffe实例的网络模型

在所有目录与文件均是基于caffe根目录!!!!! python/draw_net.py可以将网络模型由prototxt变成一张图片。在绘制之前,先安装两个库:::1、安装GraphVizsudo apt-get install GraphVizGraphviz的是一款图形绘制工具,用来被pyt...

2016-11-21 16:52:59

阅读数 1571

评论数 0

caffe源码 之 Solver类

Solver这个类实现了优化函数的封装,其中有一个protected的成员:shared_ptr net_;,这个成员是一个指向Net类型的智能指针(shared_ptr),Solver正是通过这个指针来和网络Net来交互并完成模型的优化。不同的子类分别实现了不同的优化方法:SGDSolver, ...

2016-11-18 17:25:38

阅读数 3185

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭