机器学习-实战-入门-MNIST手写数字识别

标签: python 机器学习 人工智能 MNIST 手写数字识别
2500人阅读 评论(3) 收藏 举报
分类:
作者:橘子派
声明:版权所有,转载请注明出处,谢谢。


实验环境:
Windows10
Sublime
Anaconda 1.6.0
Python3.6

代码功能包括:
一.ubyte数据集转换成csv形式
#将mnist数据集转换成CSV格式
import struct

def to_csv(name,maxdata):
	lbl_f = open("./data/"+name+"-labels.idx1-ubyte","rb")
	#打开标签数据集
	img_f = open("./data/"+name+"-images.idx3-ubyte","rb")
	#打开图像数据集
	csv_f = open("./data/"+name+",csv","w",encoding="utf-8")
	#写入CSV文件

	mag,lbl_count=struct.unpack(">II",lbl_f.read(8))
	#将字节流转换成python数据类型复制给标签
	mag,img_count=struct.unpack(">II",img_f.read(8))
	#将字节流转换成python数据类型复制给图像
	rows,cols=struct.unpack(">II",img_f.read(8))
	#将字节流转换成python数据类型复制给行列
	pixels=rows*cols
	#计算数据总量

	res=[]
	for idx in range(lbl_count):
		if idx > maxdata:break
		#设置计数器,大于数据个数总量时跳出循环
		label=struct.unpack("B",lbl_f.read(1))[0]
		bdata=img_f.read(pixels)
		sdata=list(map(lambda n:str(n),bdata))
		csv_f.write(str(label)+",")
		#写入标签
		csv_f.write(",".join(sdata)+"\r\n")
		#写入数据(数字)
		if idx < 10:
			s="P2 28 28 255\n"
			s+=" ".join(sdata)
			iname="./data/{0}-{1}-{2}.pgm".format(name,idx,label)
			with open(iname,"w",encoding="utf-8") as f:
				f.write(s)
	csv_f.close()
	#关闭CSV流
	lbl_f.close()
	#关闭标签流
	img_f.close()
	#关闭图像流

to_csv("train",1000)
#转换到train.csv 1000个数据
to_csv("t10k",1000)
#转换到t10k.csv 1000个数据

二.用sklearn的交叉验证处理数据,SVM训练数据预测结果,metrics生成分类报告和准确率
#用sklearn中的SVM来训练模型,预测数据集
from sklearn import cross_validation,svm,metrics

def load_csv(fname):
	labels=[]
	images=[]
	with open(fname,"r") as f:
		for line in f:
			cols=line.split(",")
			if len(cols)<2:continue
			labels.append(int(cols.pop(0)))
			vals=list(map(lambda n: int(n) / 256,cols))
			images.append(vals)
		return {"labels":labels,"images":images}

data=load_csv("./data/train.csv")
test=load_csv("./data/t10k.csv")

clf=svm.SVC()
clf.fit(data["images"],data["labels"])
#训练数据集

predict=clf.predict(test["images"])
#预测测试集

score=metrics.accuracy_score(test["labels"],predict)
#生成测试精度
report=metrics.classification_report(test["labels"],predict)
#生成交叉验证的报告
print(score)
#显示数据精度
print(report)
#显示交叉验证数据集报告

运行结果

三组平均测试精度为0.772

参考文献:
《统计学习方法》
Web scraping and machine learning by python
查看评论

四种格式的mnist数据集

  • 2017年11月18日 22:56
  • 71.83MB
  • 下载

详解 MNIST 数据集

MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下.MNIST 数据集可在 http://yan...
  • simple_the_best
  • simple_the_best
  • 2017-07-17 20:41:35
  • 39251

MNIST数据集的格式转换

以前直接用的是sklearn或者TensorFlow提供的mnist数据集,已经转换为矩阵形式的数据格式。但是sklearn体用的数据集合并不全,一共只有3000+图,每个图是8*8的大小,但是原始数...
  • jinxiaonian11
  • jinxiaonian11
  • 2017-10-08 00:06:09
  • 12199

MNIST数据集格式转化

MNIST数据集格式转化
  • u011762313
  • u011762313
  • 2016-01-12 20:38:04
  • 2132

MNIST数据集解析

官网一探 MNIST数据集是一个手写体数据集,简单说就是一堆这样东西 MNIST的官网地址是 MNIST; 通过阅读官网我们可以知道,这个数据集由四部分组成,分别是 ;也就是一个训练图片集,一个训练...
  • sysushui
  • sysushui
  • 2016-11-21 10:49:44
  • 19107

mnist数据集

  • 2017年09月07日 14:42
  • 11.06MB
  • 下载

MNIST集的数据格式

MNIST数据集的文件格式本数据集采用非常简单的方式来保存,就像数组和多维矩阵一样储存。本数据集的文件里按整数保存的数字,都是按MSB优先的方式保存,也叫大端模式,也可以叫做非INTEL处理器的保存格...
  • caimouse
  • caimouse
  • 2017-03-09 20:14:52
  • 1971

minist数据集 csv格式(适用于本人感知机博文)

  • 2018年01月16日 15:03
  • 73.18MB
  • 下载

MNIST数据集转化为CSV格式

MNIST数据集是一个手写识别数据集,机器学习基础的数据集,其原始数据集以字节形式存储,包含四个部分:训练集images: train-images-idx3-ubyte.gz (包含60000个样本...
  • Albert201605
  • Albert201605
  • 2018-04-11 11:46:27
  • 37

使用tensorflow对Mnist数据集进行字体识别

上代码: #!/usr/bin/env python #coding:utf-8 import tensorflow import pandas as pd import skflow trai...
  • a_step_further
  • a_step_further
  • 2017-02-07 22:59:17
  • 547
    个人资料
    专栏达人
    等级:
    访问量: 15万+
    积分: 2500
    排名: 1万+
    机器学习 QQ群加入
    博客专栏
    最新评论