K-L变换实现图像压缩

卡洛南-洛伊(karhunen-Loeve)变换,简称K-L变换,也叫霍特林变换或者主成分分析。

必备数学知识:协方差,相关系数,协方差矩阵(这三个知识点我是参考的同济大学的概率论数与数理统计那本书,讲的很实在),对称矩阵相似对角化

协方差与相关系数都是用来衡量不同维度之间的相关性,正值越大说明正相关越高,负值越大说明负相关越高。协方差在matlab中可用cov()来进行计算,如下图
这里写图片描述

**主对角线的值代表了方差,其余的就代表了协方差。
matlab中corrcoef是计算的各维度之间的相关系数,就是在协方差基础上除以标准差来归一化**
这里写图片描述
我们看到主对角线都为1,说明方差为1

K-L变换

这里写图片描述
K-L变换的实质就是去除各维度之间的相关性。就是建立新的坐标系,将原本高度相关的数据在新坐标系下的协方差矩阵除对角线以外的元素都是零。如图:
这里写图片描述
在原坐标系下的x,y具有很强的相关性,y大致随着x的增大而增大。但在新坐标系下(x’,y’坐标系),横纵 坐标之间变得没有相关性,这表明相关性被去除。
这里写图片描述
这里写图片描述

如何实现坐标转换

构建新坐标系的过程就是主成分变换的过程。y代表新坐标系的坐标点,x代表原来坐标系的点。

y=Gx

其中G就是变换矩阵,G矩阵就是x的协方差矩阵的特征向量矩阵的转置矩阵。
Σxx

λiΣxξiλi

matrix=[ξ1,ξ2,ξ3.......ξn]

G=matrixT

其实求解变换矩阵G就是求使得对阵矩阵相似对角化的正交矩阵P

Σx使

这里写图片描述

K-L变换示例

1、读取一幅图像,f图像的size为359*479
这里写图片描述
2、matlab函数princomp()可以方便计算特征矩阵向量coeff,和特征值latent

[coeff,score,latent]=princomp(f);

这里写图片描述
这里写图片描述

3、将原图像转换到新坐标系下

y=fceoff

这里写图片描述
可以发现,转换后的图像越往后的列的值越小,可以用图像更直观地看
这里写图片描述
将部分很小的y值置零
y(:,200:end)=0;

再将图像复原
yi=ycoeff;

复原的图像如下显示
这里写图片描述

观察得到,图像有损失,但是存储压力小很多。

matlab图像压缩

function KL_compress(imgpath)
%   使用K-L变换/主成分分析来对图像压缩
    f=imread(imgpath);
    f=im2double(f);
    y=[];
    [m,n]=size(f);

    %  拆分图像,将8*8的图像小块展开成1*64的向量,K-L变换的变换矩阵只和维度有关,故只需64*64的变换矩阵就可以了
    %  虽然这样计算降低了计算复杂度 ,但是并没有消除小块之间的相关性,但实验结果表明效果良好
    for i=1:m/8
        for j=1:n/8
            ii=(i-1)*8+1;
            jj=(j-1)*8+1;
            y_append=reshape(f(ii:ii+7,jj:jj+7),1,64)  % 将图像分成8*8的小块  
            y=[y;y_append];
        end
    end

    % K-L变换
    [coeff,score,latent]=princomp(y);
    k1=y*coeff;

    k11=k1;
    k12=k1;
    k13=k1;
    % 置0压缩过程
    k11(:,33:64)=0;
    k12(:,17:64)=0;
    k13(:,9:64)=0;

    % K-L逆变换
    k11_inverse=k11*coeff';
    k12_inverse=k12*coeff';
    k13_inverse=k13*coeff';
    k=1;
    %  重组图像
    for i=1:m/8
        for j=1:n/8
            y1=reshape(k11_inverse(k,1:64),8,8);
            y2=reshape(k12_inverse(k,1:64),8,8);
            y3=reshape(k13_inverse(k,1:64),8,8);
            ii=(i-1)*8+1;
            jj=(j-1)*8+1;
            image1(ii:ii+7,jj:jj+7)=y1;
            image2(ii:ii+7,jj:jj+7)=y2;
            image3(ii:ii+7,jj:jj+7)=y3;
            k=k+1;
        end
    end
    imshow(image1),title('压缩50%');
    figure,imshow(image2),title('压缩73%');
    figure,imshow(image3),title('压缩86%');
end

这里写图片描述

参考资料:中科院数字图像处理PPT-正交变换2,数字图像处理原理与实战(Matlab版),同济6版概率论与数理统计

发布了165 篇原创文章 · 获赞 241 · 访问量 52万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览