- #include <stdio.h>
- #include <conio.h>
- #include <string.h>
- #define max(x1, y1) ((x1) > (y1) ? (x1) : (y1))
- #define min(x1, y1) ((x1) < (y1) ? (x1) : (y1))
- #define MAXSIZE 200002
- typedef struct {
- int max ;
- int left, right ;
- } NODE ;
- int n, m ;
- int num [MAXSIZE] ;
- NODE tree[MAXSIZE * 20] ;
- // 构建线段树
- int build (int root, int left, int right)
- {
- int mid ;
- // 当前节点所表示的区间
- tree[root].left = left ;
- tree[root].right = right ;
- // 左右区间相同,则此节点为叶子,max 应储存对应某个学生的值
- if (left == right)
- {
- return tree[root].max = num[left] ;
- }
- mid = (left + right) / 2 ;
- // 递归建立左右子树,并从子树中获得最大值
- int a, b ;
- a = build (2 * root, left, mid) ;
- b = build (2 * root + 1, mid + 1, right) ;
- return tree[root].max = max (a, b) ;
- }
- // 从节点 root 开始,查找 left 和 right 之间的最大值
- int find (int root, int left, int right)
- {
- int mid ;
- // 若此区间与 root 所管理的区间无交集
- if (tree[root].left > right || tree[root].right < left)
- return 0 ;
- // 若此区间包含 root 所管理的区间
- if (left <= tree[root].left && tree[root].right <= right)
- return tree[root].max ;
- // 若此区间与 root 所管理的区间部分相交
- int a, b ; // 不能这样 max (find(...), find(...));
- a = find (2 * root, left, right) ;
- b = find (2 * root + 1, left, right) ;
- return max (a, b) ;
- }
- // 更新 pos 点的值
- int update (int root, int pos, int val)
- {
- // 若 pos 不存在于 root 所管理的区间内
- if (pos < tree[root].left || tree[root].right < pos)
- return tree[root].max ;
- // 若 root 正好是一个符合条件的叶子
- if (tree[root].left == pos && tree[root].right == pos)
- return tree[root].max = val ;
- // 否则。。。。
- int a, b ; // 不能这样 max (find(...), find(...));
- a = update (2 * root, pos, val) ;
- b = update (2 * root + 1, pos, val) ;
- tree[root].max = max (a, b) ;
- return tree[root].max ;
- }
- int main ()
- {
- char c ;
- int i ;
- int x, y ;
- while (scanf ("%d%d", &n, &m) != EOF)
- {
- for (i = 1 ; i <= n ; ++i)
- scanf ("%d", &num[i]) ;
- build (1, 1, n) ;
- for (i = 1 ; i <= m ; ++i)
- {
- getchar () ;
- scanf ("%c%d%d", &c, &x, &y) ;
- if (c == 'Q')
- {
- printf ("%d\n", find (1, x, y)) ;
- }
- else
- {
- num[x] = y ;
- update (1, x, y) ;
- }
- }
- }
- return 0 ;
- }
hdu1754
最新推荐文章于 2019-01-29 17:33:37 发布