与POJ 1815 Friendship类似,该题之前也做过
目前处于TLE状态。样例已经通过
1066: [SCOI2007]蜥蜴
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2947 Solved: 1471
[ Submit][ Status][ Discuss]
Description
在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃
到边界外。 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石
柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不
变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴在同一个
石柱上。
Input
输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离。以下r行为石竹的初始状态,0表示没有石柱
,1~3表示石柱的初始高度。以下r行为蜥蜴位置,“L”表示蜥蜴,“.”表示没有蜥蜴。
Output
输出仅一行,包含一个整数,即无法逃离的蜥蜴总数的最小值。
Sample Input
5 8 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........
Sample Output
1
HINT
100%的数据满足:1<=r, c<=20, 1<=d<=4
从隔壁Orion_Rigel博客搬了张思路图过来(我是盗图王)
感觉代码规模差不多,为何为TLE呢?
先放TLE的代码,以后AC了再更新
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
const int INF=0x6ffffff;
struct NODE{
int w;//容量(在此题中为石柱高度)
int f;//流量
}e[1000][1000];//邻接矩阵流量边
int r,c;
int s,t;
int dis;//跳跃距离
int mp[60][60],//坐标为[x][y]的点是否为结点,是的话记录节点号
ht[60][60];//高度
int cnode=0,clizard=0;//结点数 蜥蜴数
//
int add_eg(int u,int v,int h){
e[u][v].w=h;
}
int pd(int x1,int y1,int x2,int y2){
return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)<=dis*dis;
}
//
int q[6000],d[60];
bool flag[60];
int BFS(){
int hd=1,tl=1;
int u,v;
memset(flag,0,sizeof(flag));
q[hd]=s;d[s]=0;flag[s]=1;
while(hd<=tl){
u=q[hd];
for(v=0;v<=t;v++){
if(!flag[v] && e[u][v].w>e[u][v].f){
flag[v]=1;
d[v]=d[u]+1;
q[++tl]=v;
}
if(flag[t])return 1;
}
hd++;
}
return 0;
}
int DFS(int v,int low){
int i; int flow;
if(v==t)return low;
for(i=0;i<=t;i++){
if(e[v][i].w>e[v][i].f && d[i]==d[v]+1){
if(flow=DFS(i,min(low,e[v][i].w-e[v][i].f))){
e[v][i].f+=flow;
e[i][v].f=-e[v][i].f;
return flow;
}
}
}
return 0;
}
int dinic(){
int ans=0;
while(BFS()){
int flow;
while(flow=DFS(s,INF)){
ans+=flow;
}
}
return ans;
}
int main(){
scanf("%d%d%d",&r,&c,&dis);
int i,j;
char ch[30];
for(i=1;i<=r;i++){//读石柱图
scanf("%s",ch);
for(j=0;j<c;j++){
ht[i][j+1]=ch[j]-'0';
if(ht[i][j+1]>0)mp[i][j+1]=++cnode;
}
}
s=0;t=cnode*2+1;
for(i=1;i<=r;i++){//读蜥蜴图
scanf("%s",ch);
for(j=0;j<c;j++){
if(ch[j]=='L'){
add_eg(s,mp[i][j+1],1);
clizard++;
}
}
}
for(i=1;i<=r;i++){
for(j=1;j<=c;j++){
if(mp[i][j]){
//建石柱自身到自身镜像的容量为石柱高度的边
add_eg(mp[i][j],mp[i][j]+cnode,ht[i][j]);
if(i<=dis || i+dis>r || j<=dis || j+dis>c)
add_eg(mp[i][j]+cnode,t,INF);//建出区域的边
int a,b;
for(a=max(i-dis,1);a<=min(i+dis,r);a++)
for(b=max(j-dis,1);b<=min(j+dis,c);b++){
if(i!=a || b!=j)
if(pd(i,j,a,b)) add_eg(mp[i][j]+cnode,mp[a][b],INF);//建石柱之间的边
}
}
}
}
int ans=dinic();
// printf("%d %d",clizard,ans);
printf("%d\n",clizard-ans);
return 0;
}