基于椭圆曲线的三方比特承诺实现
基于椭圆曲线的三方比特承诺实现
simanstar
后台开发
展开
-
比特承诺的概念
Alice,这位令人惊异的魔术天才,正表演关于人类意念的神秘技巧。她将在Bob选牌之前猜中Bob将选的牌!注意Alice在一张纸上写出她的预测。Alice很神秘地将那张纸片装入信封中并封上。就在人们吃惊之时Alice将封好的信封随机地递给一观众。“取一张牌,Bob,任选一张”。他看了看牌而后将之出示给Alice和观众。是方块7。现在Alice从观众那里取回信封,并撕开它。在Bob选牌之先写的预测,原创 2016-03-23 19:35:14 · 6113 阅读 · 2 评论 -
乘法逆元
定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。为什么要有乘法逆元呢?当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。证:(其实很简单。。。)根据b*k≡1 (mod p)有b*k=p*原创 2016-03-26 19:39:58 · 373 阅读 · 0 评论 -
ECC加密算法入门介绍
前言同RSA(Ron Rivest,Adi Shamir,Len Adleman三位天才的名字)一样,ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学)也属于公开密钥算法。目前,国内详细介绍ECC的公开文献并不多(反正我没有找到)。有一些简介,也是泛泛而谈,看完后依然理解不了ECC的实质(可能我理解力太差)。前些天我从国外网站找到些材料,看完后对ECC似乎懵原创 2016-03-23 15:05:41 · 936 阅读 · 0 评论 -
扩展欧几里德算法详解
扩展欧几里德算法 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出转载 2016-03-28 18:16:36 · 453 阅读 · 0 评论