线性代数及其应用习题答案(中文版)第二章 矩阵代数 2.4 分块矩阵(1)

2.4

[!CAUTION]

定理 10(ABABAB 的行展开)
AAAm×nm \times nm×n 矩阵,BBBn×pn \times pn×p 矩阵,则
AB=[col1(A)col2(A)⋯coln(A)][row1(B)row2(B)⋮rown(B)](1) AB = \begin{bmatrix} \mathrm{col}_1(A) & \mathrm{col}_2(A) & \cdots & \mathrm{col}_n(A) \end{bmatrix} \begin{bmatrix} \mathrm{row}_1(B) \\ \mathrm{row}_2(B) \\ \vdots \\ \mathrm{row}_n(B) \end{bmatrix} \tag{1} AB=[col1(A)col2(A)coln(A)]row1(B)row2(B)rown(B)(1)

=col1(A)row1(B)+col2(A)row2(B)+⋯+coln(A)rown(B) = \mathrm{col}_1(A)\mathrm{row}_1(B) + \mathrm{col}_2(A)\mathrm{row}_2(B) + \cdots + \mathrm{col}_n(A)\mathrm{row}_n(B) =col1(A)row1(B)+col2(A)row2(B)++coln(A)rown(B)

练习题

  1. 证明 [I0AI]\begin{bmatrix} I & 0 \\ A & I \end{bmatrix}[IA0I] 可逆并求出它的逆.

解答
设分块矩阵 M=[I0AI]M = \begin{bmatrix} I & 0 \\ A & I \end{bmatrix}M=[IA0I],假设其逆矩阵存在且具有分块形式 M−1=[WXYZ]M^{-1} = \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}M1=[WYXZ]。根据逆矩阵的定义,M⋅M−1=IM \cdot M^{-1} = IMM1=I,即:

[I0AI][WXYZ]=[I00I]\begin{bmatrix} I & 0 \\ A & I \end{bmatrix}\begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[IA0I][WYXZ]=[I00I]

计算左边矩阵乘积:

[I⋅W+0⋅YI⋅X+0⋅ZA⋅W+I⋅YA⋅X+I⋅Z]=[WXAW+YAX+Z]\begin{bmatrix} I \cdot W + 0 \cdot Y & I \cdot X + 0 \cdot Z \\ A \cdot W + I \cdot Y & A \cdot X + I \cdot Z \end{bmatrix} = \begin{bmatrix} W & X \\ AW + Y & AX + Z \end{bmatrix}[IW+0YAW+IYIX+0ZAX+IZ]=[WAW+YXAX+Z]

令结果等于单位矩阵,得到方程组:

  1. W=IW = IW=I(左上角元素相等)
  2. X=0X = 0X=0(右上角元素相等)
  3. AW+Y=0AW + Y = 0AW+Y=0(左下角元素相等)
  4. AX+Z=IAX + Z = IAX+Z=I(右下角元素相等)

W=IW = IW=I 代入第3式:A⋅I+Y=0A \cdot I + Y = 0AI+Y=0,解得 Y=−AY = -AY=A
X=0X = 0X=0 代入第4式:A⋅0+Z=IA \cdot 0 + Z = IA0+Z=I,解得 Z=IZ = IZ=I

因此,逆矩阵为 [I0−AI]\begin{bmatrix} I & 0 \\ -A & I \end{bmatrix}[IA0I]。验证乘积:
[I0AI][I0−AI]=[I0A−AI]=[I00I]\begin{bmatrix} I & 0 \\ A & I \end{bmatrix}\begin{bmatrix} I & 0 \\ -A & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ A - A & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[IA0I][IA0I]=[IAA0I]=[I00I]
同理,交换顺序相乘也满足单位矩阵条件,说明该逆矩阵成立。

结论
矩阵 [I0AI]\begin{bmatrix} I & 0 \\ A & I \end{bmatrix}[IA0I] 可逆,其逆矩阵为 [I0−AI]\begin{bmatrix} I & 0 \\ -A & I \end{bmatrix}[IA0I]


  1. 计算 XTXX^TXXTX,其中 XXX 分块为 [X1 X2][X_1\ X_2][X1 X2].

解答
设矩阵 XXX 的分块形式为 X=[X1 X2]X = [X_1\ X_2]X=[X1 X2],其中 X1X_1X1X2X_2X2 是适当维数的子矩阵。根据转置矩阵的定义,XXX 的转置为:
XT=[X1TX2T]X^T = \begin{bmatrix} X_1^T \\ X_2^T \end{bmatrix}XT=[X1TX2T]

计算 XTXX^TXXTX 时,应用分块矩阵乘法规则:
XTX=[X1TX2T]⋅[X1 X2]X^TX = \begin{bmatrix} X_1^T \\ X_2^T \end{bmatrix} \cdot [X_1\ X_2]XTX=[X1TX2T][X1 X2]

展开乘积:

  • 左上角块:X1T⋅X1X_1^T \cdot X_1X1TX1
  • 右上角块:X1T⋅X2X_1^T \cdot X_2X1TX2
  • 左下角块:X2T⋅X1X_2^T \cdot X_1X2TX1
  • 右下角块:X2T⋅X2X_2^T \cdot X_2X2TX2

因此:
XTX=[X1TX1X1TX2X2TX1X2TX2]X^TX = \begin{bmatrix} X_1^TX_1 & X_1^TX_2 \\ X_2^TX_1 & X_2^TX_2 \end{bmatrix}XTX=[X1TX1X2TX1X1TX2X2TX2]

注意:XTX^TXT 的列数等于 XXX 的行数,满足矩阵乘法的维度要求。此外,XTXX^TXXTX 是对称矩阵,因为 (XTX)T=XT(XT)T=XTX(X^TX)^T = X^T(X^T)^T = X^TX(XTX)T=XT(XT)T=XTX

结论
XTX=[X1TX1X1TX2X2TX1X2TX2]X^TX = \begin{bmatrix} X_1^TX_1 & X_1^TX_2 \\ X_2^TX_1 & X_2^TX_2 \end{bmatrix}XTX=[X1TX1X2TX1X1TX2X2TX2]

习题2.4

  1. 计算 [I0EI][ABCD]\begin{bmatrix} I & 0 \\ E & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}[IE0I][ACBD]

解答
应用分块矩阵乘法规则(行-列法则),左矩阵的每一行与右矩阵的每一列对应相乘:

  • 左上角块:I⋅A+0⋅C=AI \cdot A + 0 \cdot C = AIA+0C=A
  • 右上角块:I⋅B+0⋅D=BI \cdot B + 0 \cdot D = BIB+0D=B
  • 左下角块:E⋅A+I⋅C=EA+CE \cdot A + I \cdot C = EA + CEA+IC=EA+C
  • 右下角块:E⋅B+I⋅D=EB+DE \cdot B + I \cdot D = EB + DEB+ID=EB+D

结论
乘积为 [ABEA+CEB+D]\begin{bmatrix} A & B \\ EA + C & EB + D \end{bmatrix}[AEA+CBEB+D]


  1. 计算 [E00F][ABCD]\begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}[E00F][ACBD]

解答
应用分块矩阵乘法规则:

  • 左上角块:E⋅A+0⋅C=EAE \cdot A + 0 \cdot C = EAEA+0C=EA
  • 右上角块:E⋅B+0⋅D=EBE \cdot B + 0 \cdot D = EBEB+0D=EB
  • 左下角块:0⋅A+F⋅C=FC0 \cdot A + F \cdot C = FC0A+FC=FC
  • 右下角块:0⋅B+F⋅D=FD0 \cdot B + F \cdot D = FD0B+FD=FD

结论
乘积为 [EAEBFCFD]\begin{bmatrix} EA & EB \\ FC & FD \end{bmatrix}[EAFCEBFD]


  1. 计算 [0II0][WXYZ]\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}[0II0][WYXZ]

解答
应用分块矩阵乘法规则:

  • 左上角块:0⋅W+I⋅Y=Y0 \cdot W + I \cdot Y = Y0W+IY=Y
  • 右上角块:0⋅X+I⋅Z=Z0 \cdot X + I \cdot Z = Z0X+IZ=Z
  • 左下角块:I⋅W+0⋅Y=WI \cdot W + 0 \cdot Y = WIW+0Y=W
  • 右下角块:I⋅X+0⋅Z=XI \cdot X + 0 \cdot Z = XIX+0Z=X

结论
乘积为 [YZWX]\begin{bmatrix} Y & Z \\ W & X \end{bmatrix}[YWZX]


  1. 计算 [I0−XI][ABCD]\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}[IX0I][ACBD]

解答
应用分块矩阵乘法规则:

  • 左上角块:I⋅A+0⋅C=AI \cdot A + 0 \cdot C = AIA+0C=A
  • 右上角块:I⋅B+0⋅D=BI \cdot B + 0 \cdot D = BIB+0D=B
  • 左下角块:(−X)⋅A+I⋅C=−XA+C(-X) \cdot A + I \cdot C = -XA + C(X)A+IC=XA+C
  • 右下角块:(−X)⋅B+I⋅D=−XB+D(-X) \cdot B + I \cdot D = -XB + D(X)B+ID=XB+D

结论
乘积为 [AB−XA+C−XB+D]\begin{bmatrix} A & B \\ -XA + C & -XB + D \end{bmatrix}[AXA+CBXB+D]


  1. [ABC0][I0XY]=[0IZ0]\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ X & Y \end{bmatrix} = \begin{bmatrix} 0 & I \\ Z & 0 \end{bmatrix}[ACB0][IX0Y]=[0ZI0],用 A,B,CA, B, CA,B,C 求出 X,Y,ZX, Y, ZX,Y,Z 的表达式。

解答
计算左边矩阵乘积:
[ABC0][I0XY]=[A⋅I+B⋅XA⋅0+B⋅YC⋅I+0⋅XC⋅0+0⋅Y]=[A+BXBYC0]\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ X & Y \end{bmatrix} = \begin{bmatrix} A \cdot I + B \cdot X & A \cdot 0 + B \cdot Y \\ C \cdot I + 0 \cdot X & C \cdot 0 + 0 \cdot Y \end{bmatrix} = \begin{bmatrix} A + BX & BY \\ C & 0 \end{bmatrix}[ACB0][IX0Y]=[AI+BXCI+0XA0+BYC0+0Y]=[A+BXCBY0]
令其等于右边矩阵 [0IZ0]\begin{bmatrix} 0 & I \\ Z & 0 \end{bmatrix}[0ZI0],得到方程组:

  1. A+BX=0A + BX = 0A+BX=0(左上角块相等)
  2. BY=IBY = IBY=I(右上角块相等)
  3. C=ZC = ZC=Z(左下角块相等)
  4. 0=00 = 00=0(右下角块自动满足)

由方程2 BY=IBY = IBY=I,根据可逆矩阵定理(Invertible Matrix Theorem),若 BBB 是方阵且满足 BY=IBY = IBY=I,则 BBB 可逆,且 Y=B−1Y = B^{-1}Y=B1
Y=B−1Y = B^{-1}Y=B1 代入方程1:BX=−ABX = -ABX=A,右乘 B−1B^{-1}B1X=−B−1AX = -B^{-1}AX=B1A
由方程3直接得 Z=CZ = CZ=C

结论
X=−B−1AX = -B^{-1}AX=B1AY=B−1Y = B^{-1}Y=B1Z=CZ = CZ=C


  1. [X0YZ][A0BC]=[I00I]\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[XY0Z][AB0C]=[I00I],用 A,B,CA, B, CA,B,C 求出 X,Y,ZX, Y, ZX,Y,Z 的表达式。

解答
计算左边矩阵乘积:
[X0YZ][A0BC]=[X⋅A+0⋅BX⋅0+0⋅CY⋅A+Z⋅BY⋅0+Z⋅C]=[XA0YA+ZBZC]\begin{bmatrix} X & 0 \\ Y & Z \end{bmatrix} \begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} X \cdot A + 0 \cdot B & X \cdot 0 + 0 \cdot C \\ Y \cdot A + Z \cdot B & Y \cdot 0 + Z \cdot C \end{bmatrix} = \begin{bmatrix} XA & 0 \\ YA + ZB & ZC \end{bmatrix}[XY0Z][AB0C]=[XA+0BYA+ZBX0+0CY0+ZC]=[XAYA+ZB0ZC]
令其等于单位矩阵 [I00I]\begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[I00I],得到方程组:

  1. XA=IXA = IXA=I(左上角块相等)
  2. 0=00 = 00=0(右上角块自动满足)
  3. YA+ZB=0YA + ZB = 0YA+ZB=0(左下角块相等)
  4. ZC=IZC = IZC=I(右下角块相等)

由方程1 XA=IXA = IXA=I,根据可逆矩阵定理,AAA 可逆且 X=A−1X = A^{-1}X=A1
由方程4 ZC=IZC = IZC=I,同理 CCC 可逆且 Z=C−1Z = C^{-1}Z=C1
X=A−1X = A^{-1}X=A1Z=C−1Z = C^{-1}Z=C1 代入方程3:YA+C−1B=0YA + C^{-1}B = 0YA+C1B=0,移项得 YA=−C−1BYA = -C^{-1}BYA=C1B,左乘 A−1A^{-1}A1Y=−C−1BA−1Y = -C^{-1}BA^{-1}Y=C1BA1

结论
X=A−1X = A^{-1}X=A1Y=−C−1BA−1Y = -C^{-1}BA^{-1}Y=C1BA1Z=C−1Z = C^{-1}Z=C1


  1. [X00Y0I][AZ00BI]=[I00I]\begin{bmatrix} X & 0 & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A & Z \\ 0 & 0 \\ B & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[XY000I]A0BZ0I=[I00I],用 A,BA, BA,B 求出 X,Y,ZX, Y, ZX,Y,Z 的表达式。

解答
计算分块矩阵乘积:
[X00Y0I][AZ00BI]=[X⋅A+0⋅0+0⋅BX⋅Z+0⋅0+0⋅IY⋅A+0⋅0+I⋅BY⋅Z+0⋅0+I⋅I]=[XAXZYA+BYZ+I]\begin{bmatrix} X & 0 & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A & Z \\ 0 & 0 \\ B & I \end{bmatrix} = \begin{bmatrix} X \cdot A + 0 \cdot 0 + 0 \cdot B & X \cdot Z + 0 \cdot 0 + 0 \cdot I \\ Y \cdot A + 0 \cdot 0 + I \cdot B & Y \cdot Z + 0 \cdot 0 + I \cdot I \end{bmatrix} = \begin{bmatrix} XA & XZ \\ YA + B & YZ + I \end{bmatrix}[XY000I]A0BZ0I=[XA+00+0BYA+00+IBXZ+00+0IYZ+00+II]=[XAYA+BXZYZ+I]
令其等于 [I00I]\begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[I00I],得到方程组:

  1. XA=IXA = IXA=I(左上角块相等)
  2. XZ=0XZ = 0XZ=0(右上角块相等)
  3. YA+B=0YA + B = 0YA+B=0(左下角块相等)
  4. YZ+I=IYZ + I = IYZ+I=I,即 YZ=0YZ = 0YZ=0(右下角块相等)
  • 由方程1 XA=IXA = IXA=I,根据可逆矩阵定理(Invertible Matrix Theorem),若 AAA 是方阵且满足 XA=IXA = IXA=I,则 AAA 可逆,且 X=A−1X = A^{-1}X=A1
  • 由方程2 XZ=0XZ = 0XZ=0,代入 X=A−1X = A^{-1}X=A1A−1Z=0A^{-1}Z = 0A1Z=0。左乘 AAA(因 AAA 可逆),得 Z=0Z = 0Z=0
  • 由方程3 YA+B=0YA + B = 0YA+B=0,移项得 YA=−BYA = -BYA=B。右乘 A−1A^{-1}A1(注意矩阵乘法顺序),得 Y=−BA−1Y = -B A^{-1}Y=BA1
  • 验证方程4:代入 Y=−BA−1Y = -B A^{-1}Y=BA1Z=0Z = 0Z=0,得 YZ=(−BA−1)⋅0=0YZ = (-B A^{-1}) \cdot 0 = 0YZ=(BA1)0=0,满足条件。

结论
X=A−1X = A^{-1}X=A1Y=−BA−1Y = -B A^{-1}Y=BA1Z=0Z = 0Z=0


  1. [ABOI][XYZ00I]=[I0000I]\begin{bmatrix} A & B \\ O & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}[AOBI][X0Y0ZI]=[I0000I],用 A,BA, BA,B 求出 X,Y,ZX, Y, ZX,Y,Z 的表达式。

解答
计算左边矩阵乘积:
[ABOI][XYZ00I]=[A⋅X+B⋅0A⋅Y+B⋅0A⋅Z+B⋅IO⋅X+I⋅0O⋅Y+I⋅0O⋅Z+I⋅I]=[AXAYAZ+B00I]\begin{bmatrix} A & B \\ O & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} A \cdot X + B \cdot 0 & A \cdot Y + B \cdot 0 & A \cdot Z + B \cdot I \\ O \cdot X + I \cdot 0 & O \cdot Y + I \cdot 0 & O \cdot Z + I \cdot I \end{bmatrix} = \begin{bmatrix} AX & AY & AZ + B \\ 0 & 0 & I \end{bmatrix}[AOBI][X0Y0ZI]=[AX+B0OX+I0AY+B0OY+I0AZ+BIOZ+II]=[AX0AY0AZ+BI]
令其等于 [I0000I]\begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}[I0000I],得方程组:

  1. AX=IAX = IAX=I((1,1)块相等)
  2. AY=0AY = 0AY=0((1,2)块相等)
  3. AZ+B=0AZ + B = 0AZ+B=0((1,3)块相等)
  4. 0=00 = 00=0((2,1)、(2,2)块自动满足)
  5. I=II = II=I((2,3)块自动满足)

由方程1,AAA 可逆且 X=A−1X = A^{-1}X=A1
由方程2,AY=0A Y = 0AY=0,左乘 A−1A^{-1}A1Y=0Y = 0Y=0
由方程3,AZ=−BA Z = -BAZ=B,左乘 A−1A^{-1}A1Z=−A−1BZ = -A^{-1}BZ=A1B

结论
X=A−1X = A^{-1}X=A1Y=0Y = 0Y=0Z=−A−1BZ = -A^{-1}BZ=A1B


  1. A11A_{11}A11 是可逆矩阵,求出矩阵 XXXYYY 使 [I00XI0Y0I][A11A12A21A22A31A32]=[B11B120B220B32]\begin{bmatrix} I & 0 & 0 \\ X & I & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \\ 0 & B_{32} \end{bmatrix}IXY0I000IA11A21A31A12A22A32=B1100B12B22B32,并计算 B22B_{22}B22

解答
计算左边矩阵乘积:
[I00XI0Y0I][A11A12A21A22A31A32]=[A11A12XA11+A21XA12+A22YA11+A31YA12+A32]\begin{bmatrix} I & 0 & 0 \\ X & I & 0 \\ Y & 0 & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ XA_{11} + A_{21} & XA_{12} + A_{22} \\ YA_{11} + A_{31} & YA_{12} + A_{32} \end{bmatrix}IXY0I000IA11A21A31A12A22A32=A11XA11+A21YA11+A31A12XA12+A22YA12+A32
令其等于 [B11B120B220B32]\begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \\ 0 & B_{32} \end{bmatrix}B1100B12B22B32,得:

  • B11=A11B_{11} = A_{11}B11=A11B12=A12B_{12} = A_{12}B12=A12
  • 左下 2×12 \times 12×1 块:XA11+A21=0XA_{11} + A_{21} = 0XA11+A21=0YA11+A31=0YA_{11} + A_{31} = 0YA11+A31=0
  • B22=XA12+A22B_{22} = XA_{12} + A_{22}B22=XA12+A22B32=YA12+A32B_{32} = YA_{12} + A_{32}B32=YA12+A32

XA11+A21=0XA_{11} + A_{21} = 0XA11+A21=0,移项得 XA11=−A21XA_{11} = -A_{21}XA11=A21。因 A11A_{11}A11 可逆,左乘 A11−1A_{11}^{-1}A111X=−A21A11−1X = -A_{21}A_{11}^{-1}X=A21A111
YA11+A31=0YA_{11} + A_{31} = 0YA11+A31=0,同理得 Y=−A31A11−1Y = -A_{31}A_{11}^{-1}Y=A31A111
代入 B22B_{22}B22 表达式:
B22=(−A21A11−1)A12+A22=A22−A21A11−1A12B_{22} = (-A_{21}A_{11}^{-1})A_{12} + A_{22} = A_{22} - A_{21}A_{11}^{-1}A_{12}B22=(A21A111)A12+A22=A22A21A111A12

结论
X=−A21A11−1X = -A_{21}A_{11}^{-1}X=A21A111Y=−A31A11−1Y = -A_{31}A_{11}^{-1}Y=A31A111B22=A22−A21A11−1A12B_{22} = A_{22} - A_{21}A_{11}^{-1}A_{12}B22=A22A21A111A12


  1. [I00CI0ABI]\begin{bmatrix} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{bmatrix}ICA0IB00I 的逆为 [I00ZI0XYI]\begin{bmatrix} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{bmatrix}IZX0IY00I,求 X,Y,ZX, Y, ZX,Y,Z

解答
设原矩阵为 M=[I00CI0ABI]M = \begin{bmatrix} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{bmatrix}M=ICA0IB00I,逆矩阵为 M−1=[I00ZI0XYI]M^{-1} = \begin{bmatrix} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{bmatrix}M1=IZX0IY00I。由 MM−1=IM M^{-1} = IMM1=I
[I00CI0ABI][I00ZI0XYI]=[I00C+ZI0A+BZ+XB+YI]\begin{bmatrix} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ C + Z & I & 0 \\ A + BZ + X & B + Y & I \end{bmatrix}ICA0IB00IIZX0IY00I=IC+ZA+BZ+X0IB+Y00I
令其等于单位矩阵 [I000I000I]\begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}I000I000I,得方程组:

  1. C+Z=0C + Z = 0C+Z=0((2,1)块)
  2. A+BZ+X=0A + BZ + X = 0A+BZ+X=0((3,1)块)
  3. B+Y=0B + Y = 0B+Y=0((3,2)块)

由方程1:Z=−CZ = -CZ=C
由方程3:Y=−BY = -BY=B
代入方程2:A+B(−C)+X=0A + B(-C) + X = 0A+B(C)+X=0,即 X=−A+BCX = -A + BCX=A+BC

结论
Z=−CZ = -CZ=CY=−BY = -BY=BX=−A+BCX = -A + BCX=A+BC


  1. a. 若 A=[A1 A2],B=[B1 B2],A1A = [A_1\ A_2], B = [B_1\ B_2], A_1A=[A1 A2],B=[B1 B2],A1A2A_2A2 的维数分别与 B1B_1B1B2B_2B2 的维数相同,则 A+B=[A1+B1 A2+B2]A + B = [A_1 + B_1\ A_2 + B_2]A+B=[A1+B1 A2+B2]

解答:
矩阵加法要求两个矩阵具有相同的维度。当 AAABBB 均为分块矩阵,且 A1A_1A1B1B_1B1A2A_2A2B2B_2B2 具有相同的维度时,分块矩阵加法满足:

  • A1+B1A_1 + B_1A1+B1 是合法的(维度匹配)
  • A2+B2A_2 + B_2A2+B2 是合法的(维度匹配)
    因此,A+BA + BA+B 的结果是将对应子块相加,即 [A1+B1 A2+B2][A_1 + B_1\ A_2 + B_2][A1+B1 A2+B2]。这与矩阵加法的定义一致:按元素相加,分块结构保持不变。

结论
该命题为真。


  1. b. 若 A=[A11A12A21A22],B=[B1B2]A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}A=[A11A21A12A22],B=[B1B2],则 AAABBB 的分块适合于分块乘法。

解答
分块矩阵乘法要求:

  1. 左矩阵的列分块数等于右矩阵的行分块数
  2. 对应子块的维度匹配(左矩阵列块的列数等于右矩阵行块的行数)

对于 AAA,列分块数为 2;对于 BBB,行分块数为 2。但:

  • AAA 的第一列块 [A11;A21][A_{11}; A_{21}][A11;A21] 的列数需等于 B1B_1B1 的行数
  • AAA 的第二列块 [A12;A22][A_{12}; A_{22}][A12;A22] 的列数需等于 B2B_2B2 的行数

题目未提供这些维度匹配的条件,因此不能保证分块乘法可行。例如,若 A11A_{11}A11m×nm \times nm×n 矩阵而 B1B_1B1p×qp \times qp×q 矩阵且 n≠pn \neq pn=p,则乘法无定义。

结论
该命题为假。


  1. a. 矩阵向量的乘积 AxAxAx 的定义是分块乘积的特殊情况。

解答
矩阵向量乘积 AxAxAx 可视为分块乘积的特殊情况:

  • 将向量 xxx 视为 n×1n \times 1n×1 的矩阵(单列分块矩阵)
  • AAA 视为 m×nm \times nm×n 矩阵,其列分块为 [a1 a2 … an][a_1\ a_2\ \dots\ a_n][a1 a2  an]aia_iai 为列向量)
    则:
    Ax=[a1 a2 … an][x1x2⋮xn]=x1a1+x2a2+⋯+xnanAx = [a_1\ a_2\ \dots\ a_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \dots + x_na_nAx=[a1 a2  an]x1x2xn=x1a1+x2a2++xnan
    这与分块矩阵乘法规则一致:左矩阵的列块与右矩阵的行块相乘后求和。因此,矩阵向量乘法是分块乘法在右矩阵为单列时的特例。

结论
该命题为真。


  1. b. 若 A1,A2,B1A_1, A_2, B_1A1,A2,B1B2B_2B2n×nn \times nn×n 矩阵,A=[A1A2]A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}A=[A1A2],且 B=[B1B2]B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}B=[B1B2],则乘积 BABABA 有定义,但 ABABAB 无定义。

解答

  • A=[A1A2]A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}A=[A1A2]2n×n2n \times n2n×n 矩阵(因 A1,A2A_1, A_2A1,A2 均为 n×nn \times nn×n
  • B=[B1B2]B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}B=[B1B2]n×2nn \times 2nn×2n 矩阵(因 B1,B2B_1, B_2B1,B2 均为 n×nn \times nn×n

矩阵乘法规则:

  • BABABABBBn×2nn \times 2nn×2n×\times× AAA2n×n2n \times n2n×n→\rightarrow n×nn \times nn×n 矩阵,有定义
  • ABABABAAA2n×n2n \times n2n×n×\times× BBBn×2nn \times 2nn×2n→\rightarrow 2n×2n2n \times 2n2n×2n 矩阵,也有定义

例如:
AB=[A1A2][B1B2]=[A1B1A1B2A2B1A2B2]AB = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \end{bmatrix} = \begin{bmatrix} A_1B_1 & A_1B_2 \\ A_2B_1 & A_2B_2 \end{bmatrix}AB=[A1A2][B1B2]=[A1B1A2B1A1B2A2B2]
结果是一个 2n×2n2n \times 2n2n×2n 矩阵,维度匹配。

结论
该命题为假,因为 ABABAB 也有定义。


  1. A=[B00C]A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}A=[B00C],其中 BBBCCC 是方阵,证明 AAA 可逆当且仅当 BBBCCC 都可逆。

解答
必要性(⇒\Rightarrow:假设 AAA 可逆,设 A−1=[DEFG]A^{-1} = \begin{bmatrix} D & E \\ F & G \end{bmatrix}A1=[DFEG]。则:
AA−1=[B00C][DEFG]=[BDBECFCG]=[I00I]AA^{-1} = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}\begin{bmatrix} D & E \\ F & G \end{bmatrix} = \begin{bmatrix} BD & BE \\ CF & CG \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}AA1=[B00C][DFEG]=[BDCFBECG]=[I00I]
由等式得:

  • BD=IBD = IBD=I:根据可逆矩阵定理(Invertible Matrix Theorem),BBB 可逆且 D=B−1D = B^{-1}D=B1
  • CG=ICG = ICG=I:同理,CCC 可逆且 G=C−1G = C^{-1}G=C1
  • BE=0BE = 0BE=0:左乘 B−1B^{-1}B1E=0E = 0E=0
  • CF=0CF = 0CF=0:左乘 C−1C^{-1}C1F=0F = 0F=0
    A−1=[B−100C−1]A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix}A1=[B100C1],且 B,CB, CB,C 均可逆。

充分性(⇐\Leftarrow:假设 BBBCCC 都可逆。考虑矩阵 [B−100C−1]\begin{bmatrix} B^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix}[B100C1],计算:
[B00C][B−100C−1]=[BB−100CC−1]=[I00I]\begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}\begin{bmatrix} B^{-1} & 0 \\ 0 & C^{-1} \end{bmatrix} = \begin{bmatrix} BB^{-1} & 0 \\ 0 & CC^{-1} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[B00C][B100C1]=[BB100CC1]=[I00I]
由于 AAA 是方阵,根据可逆矩阵定理,AAA 可逆。

结论
AAA 可逆当且仅当 BBBCCC 都可逆。


  1. 证明:分块上三角矩阵 A=[A11A120A22]A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}A=[A110A12A22] 可逆当且仅当 A11A_{11}A11A22A_{22}A22 都可逆。

解答
必要性(⇒\Rightarrow:假设 AAA 可逆。由分块矩阵性质可知,AAA 的行列式满足 det⁡(A)=det⁡(A11)det⁡(A22)\det(A) = \det(A_{11})\det(A_{22})det(A)=det(A11)det(A22)。因 AAA 可逆,det⁡(A)≠0\det(A) \neq 0det(A)=0,故 det⁡(A11)≠0\det(A_{11}) \neq 0det(A11)=0det⁡(A22)≠0\det(A_{22}) \neq 0det(A22)=0,即 A11A_{11}A11A22A_{22}A22 均可逆。

充分性(⇐\Leftarrow:假设 A11A_{11}A11A22A_{22}A22 都可逆。构造候选逆矩阵 A−1=[A11−1−A11−1A12A22−10A22−1]A^{-1} = \begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}A1=[A1110A111A12A221A221],验证乘积:
AA−1=[A11A120A22][A11−1−A11−1A12A22−10A22−1]=[A11A11−1+A12⋅0A11(−A11−1A12A22−1)+A12A22−10⋅A11−1+A22⋅00⋅(−A11−1A12A22−1)+A22A22−1]=[I−A12A22−1+A12A22−10I]=[I00I] \begin{align*} AA^{-1} &= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}\begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix} \\ &= \begin{bmatrix} A_{11}A_{11}^{-1} + A_{12} \cdot 0 & A_{11}(-A_{11}^{-1}A_{12}A_{22}^{-1}) + A_{12}A_{22}^{-1} \\ 0 \cdot A_{11}^{-1} + A_{22} \cdot 0 & 0 \cdot (-A_{11}^{-1}A_{12}A_{22}^{-1}) + A_{22}A_{22}^{-1} \end{bmatrix} \\ &= \begin{bmatrix} I & -A_{12}A_{22}^{-1} + A_{12}A_{22}^{-1} \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \end{align*} AA1=[A110A12A22][A1110A111A12A221A221]=[A11A111+A1200A111+A220A11(A111A12A221)+A12A2210(A111A12A221)+A22A221]=[I0A12A221+A12A221I]=[I00I]
由于 AAA 是方阵,根据可逆矩阵定理,AAA 可逆。

结论
分块上三角矩阵 AAA 可逆当且仅当 A11A_{11}A11A22A_{22}A22 都可逆。


  1. A11A_{11}A11 可逆。求出 XXXYYY 使得
    [A11A12A21A22]=[I0XI][A1100S][IY0I]\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}[A11A21A12A22]=[IX0I][A1100S][I0YI]
    其中 S=A22−A21A11−1A12S = A_{22} - A_{21}A_{11}^{-1}A_{12}S=A22A21A111A12

解答
计算右边乘积:
[I0XI][A1100S][IY0I]=[A110XA11S][IY0I]=[A11A11YXA11XA11Y+S] \begin{align*} &\begin{bmatrix} I & 0 \\ X & I \end{bmatrix}\begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix}\begin{bmatrix} I & Y \\ 0 & I \end{bmatrix} \\ &= \begin{bmatrix} A_{11} & 0 \\ XA_{11} & S \end{bmatrix}\begin{bmatrix} I & Y \\ 0 & I \end{bmatrix} \\ &= \begin{bmatrix} A_{11} & A_{11}Y \\ XA_{11} & XA_{11}Y + S \end{bmatrix} \end{align*} [IX0I][A1100S][I0YI]=[A11XA110S][I0YI]=[A11XA11A11YXA11Y+S]
令其等于左边矩阵:
[A11A12A21A22]=[A11A11YXA11XA11Y+S]\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{11}Y \\ XA_{11} & XA_{11}Y + S \end{bmatrix}[A11A21A12A22]=[A11XA11A11YXA11Y+S]
比较对应块:

  1. A11Y=A12A_{11}Y = A_{12}A11Y=A12:因 A11A_{11}A11 可逆,左乘 A11−1A_{11}^{-1}A111Y=A11−1A12Y = A_{11}^{-1}A_{12}Y=A111A12
  2. XA11=A21XA_{11} = A_{21}XA11=A21:因 A11A_{11}A11 可逆,右乘 A11−1A_{11}^{-1}A111X=A21A11−1X = A_{21}A_{11}^{-1}X=A21A111
  3. XA11Y+S=A22XA_{11}Y + S = A_{22}XA11Y+S=A22:代入 X,YX, YX,YS=A22−A21A11−1A12S = A_{22} - A_{21}A_{11}^{-1}A_{12}S=A22A21A111A12(与题设一致)

结论
X=A21A11−1X = A_{21}A_{11}^{-1}X=A21A111Y=A11−1A12Y = A_{11}^{-1}A_{12}Y=A111A12


  1. 基于上题的条件,设分块矩阵 A=[A11A12A21A22]A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}A=[A11A21A12A22] 可逆,且 A11A_{11}A11 可逆。证明 A11A_{11}A11 的舒尔补 S=A22−A21A11−1A12S = A_{22} - A_{21}A_{11}^{-1}A_{12}S=A22A21A111A12 也是可逆的。

解答
由习题15,AAA 可分解为:
A=[I0XI][A1100S][IY0I]A = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}A=[IX0I][A1100S][I0YI]
其中 X=A21A11−1X = A_{21}A_{11}^{-1}X=A21A111Y=A11−1A12Y = A_{11}^{-1}A_{12}Y=A111A12

首先证明 [I0XI]\begin{bmatrix} I & 0 \\ X & I \end{bmatrix}[IX0I][IY0I]\begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}[I0YI] 可逆:

  • [I0XI][I0−XI]=[I00I]\begin{bmatrix} I & 0 \\ X & I \end{bmatrix}\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[IX0I][IX0I]=[I00I],故逆为 [I0−XI]\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix}[IX0I]
  • [IY0I][I−Y0I]=[I00I]\begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}\begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}[I0YI][I0YI]=[I00I],故逆为 [I−Y0I]\begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix}[I0YI]

将分解式左乘 [I0−XI]\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix}[IX0I],右乘 [I−Y0I]\begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix}[I0YI]
[A1100S]=[I0−XI]A[I−Y0I]\begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} = \begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} A \begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix}[A1100S]=[IX0I]A[I0YI]
由于 AAA 可逆,且 [I0−XI]\begin{bmatrix} I & 0 \\ -X & I \end{bmatrix}[IX0I][I−Y0I]\begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix}[I0YI] 均可逆,右边是三个可逆矩阵的乘积,故 [A1100S]\begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix}[A1100S] 可逆。

由习题13,[A1100S]\begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix}[A1100S] 可逆当且仅当 A11A_{11}A11SSS 均可逆。已知 A11A_{11}A11 可逆,因此 SSS 也必须可逆。

结论
SSS 可逆。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值