【线性代数】【第二章】矩阵习题

壹. 重要定理

一. 相关概念

1. 伴随矩阵

在这里插入图片描述

 

2. 初等变换与等价

等价:经过有限次初等变换。

初等变换:左乘与右乘

在这里插入图片描述

 

3. 正交矩阵

在这里插入图片描述
 

二. 主要定理

在这里插入图片描述

 
求逆矩阵的工作量少一半

在这里插入图片描述

 

三. 主要公式

在这里插入图片描述
在这里插入图片描述

 
在这里插入图片描述

 

贰. 典型例题

1. 矩阵运算

注意:

在这里插入图片描述

 

题型一. 列向量的乘积

在这里插入图片描述

 
在这里插入图片描述

设矩阵,运算观察。
或直接对角线元素相加。

 

题型二:矩阵的n次方

在这里插入图片描述

  • 方法一: 直接乘
  • 方法二:秩=1,可以化成两个向量的乘积。
    另外两个向量乘积之后=数,是对角线元素相加。
    在这里插入图片描述

 
在这里插入图片描述
直接乘。

 
在这里插入图片描述

公式:注意n倍的对于矩阵的每行都乘。
在这里插入图片描述

 
整理等式,计算。n次方的化简。
在这里插入图片描述

在这里插入图片描述

 

2. 特殊矩阵

题型一:伴随矩阵的求法

在这里插入图片描述
在这里插入图片描述

 

在这里插入图片描述

  • 方法1:通过代数余子式,注意行列互换
  • 方法2:通过行列式变换求逆+求行列式的值。

 
在这里插入图片描述
AB看成整体, C C ∗ = ∣ C ∣ E CC^{*}=|C|E CC=CE。等式左边

第九章 二次型 §9.1 习题 1.证明,一个非奇异的对称矩阵必与它的逆矩阵合同. 2.对下列每一矩阵A,分别求一可逆矩阵P,使 是对角形式: (i) (ii) (iii) 3.写出二次型 的矩阵,并将这个二次型化为一个与它等价的二次型,使后者只含变量的平方项. 4.令A是数域F上一个n阶斜对称矩阵,即满足条件 . (i)A必与如下形式的一个矩阵合同: (ii) 斜对称矩阵的秩一定是偶数. (iii) F上两个n阶斜对称矩阵合同的充要条件是它们有相同的秩. §9.2 复数域和实数域上的二次型 1.设S是复数域上一个n阶对称矩阵.证明,存在复数域上一个矩阵A,使得 . 2.证明,任何一个n阶可逆复对称矩阵必定合同于以下形式的矩阵之一: 3.证明,任何一个n阶可逆实对称矩阵必与以下形式的矩阵之一合同: 4.证明,一个实二次型 可以分解成两个实系数n元一次齐次多项式的乘积的充分且必要条件是:或者q的秩等于1,或者q的秩等于2并且符号差等于0. 5.令 证明A与B在实数域上合同,并且求一可逆实矩阵P,使得 . 6.确定实二次型 的秩和符号差. 7.确定实二次型 的秩和符号差. 8.证明,实二次型 的秩和符号差与 无关. §9.3 正定二次型 1.判断下列实二次型是不是正定的: ; 2. 取什么值时,实二次型 是正定的. 3.设A是一个实对称矩阵.如果以A为矩阵的实二次型是正定的,那么就说A是正定的.证明,对于任意实对称矩阵A,总存在足够大的实数 ,使得 是正定的. 4.证明, 阶实对称矩阵 是正定的,必要且只要对于任意 , 阶子式 5.设 是一个 阶正定实对称矩阵.证明 当且仅当A是对角形矩阵时,等号成立. [提示:对 作数学归纳法,利用定理9.3.2的证明及习题4.] 6.设 是任意 阶实矩阵.证明 (阿达马不等式). [提示:当 时,先证明 是正定对称矩阵,再利用习题5.] §9.4 主轴问题 1.对于下列每一矩阵A,求一个正交矩阵U,使得 具有对角形式: ; ; 2.设A是一个正定对称矩阵.证明:存在一个正定对称矩阵S使得 . 3.设A是一个 阶可逆实矩阵.证明,存在一个正定对称矩阵S和一个正交矩阵U,使得 . [提示: 是正定对称矩阵.于是由习题2存在正定矩阵S,使得 = .再看一下U应该怎样取.] 4.设 是一组两两可交换的 阶实对称矩阵.证明,存在一个 阶正交矩阵U,使得 都是对角形矩阵. [提示:对 作数学归纳法,并且参考7.6,习题9.]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值