事务的隔离级别解读

Spring事务隔离级别(Isolation Level):

1.首先说明一下事务并发引起的三种情况:

1) Dirty Reads 脏读 
一个事务正在对数据进行更新操作,但是更新还未提交,另一个事务这时也来操作这组数据,并且读取了前一个事务还未提交的数据,而前一个事务如果操作失败进行了回滚,后一个事务读取的就是错误数据,这样就造成了脏读。


2) Non-Repeatable Reads 不可重复读 
一个事务多次读取同一数据,在该事务还未结束时,另一个事务也对该数据进行了操作,而且在第一个事务两次次读取之间,第二个事务对数据进行了更新,那么第一个事务前后两次读取到的数据是不同的,这样就造成了不可重复读。


3) Phantom Reads 幻像读 
第一个数据正在查询符合某一条件的数据,这时,另一个事务又插入了一条符合条件的数据,第一个事务在第二次查询符合同一条件的数据时,发现多了一条前一次查询时没有的数据,仿佛幻觉一样,这就是幻像读。


非重复度和幻像读的区别:
非重复读是指同一查询在同一事务中多次进行,由于其他提交事务所做的修改或删除,每次返回不同的结果集,此时发生非重复读。

幻像读是指同一查询在同一事务中多次进行,由于其他提交事务所做的插入操作,每次返回不同的结果集,此时发生幻像读。

表面上看,区别就在于非重复读能看见其他事务提交的修改和删除,而幻像能看见其他事务提交的插入。 

2.隔离级别:

 

1) DEFAULT (默认) 
这是一个PlatfromTransactionManager默认的隔离级别,使用数据库默认的事务隔离级别。另外四个与JDBC的隔离级别相对应。

2) READ_UNCOMMITTED (读未提交) 
这是事务最低的隔离级别,它允许另外一个事务可以看到这个事务未提交的数据。这种隔离级别会产生脏读,不可重复读和幻像读。 

3) READ_COMMITTED (读已提交) 
保证一个事务修改的数据提交后才能被另外一个事务读取,另外一个事务不能读取该事务未提交的数据。这种事务隔离级别可以避免脏读出现,但是可能会出现不可重复读和幻像读。 

4) REPEATABLE_READ (可重复读) 
这种事务隔离级别可以防止脏读、不可重复读,但是可能出现幻像读。它除了保证一个事务不能读取另一个事务未提交的数据外,还保证了不可重复读。

5) SERIALIZABLE(串行化) 
这是花费最高代价但是最可靠的事务隔离级别,事务被处理为顺序执行。除了防止脏读、不可重复读外,还避免了幻像读。 

 

隔离级别解决事务并行引起的问题:

【源码免费下载链接】:https://renmaiwang.cn/s/50mmq 5、NiFi FileFlow示例和NIFI模板示例网址: NiFi是一款强大的数据处理和自动化工具,常用于ETL(提取、转换、加载)流程,数据同步任务,以及大数据处理。在本篇内容中,我们将深入探讨NiFi中的FileFlow示例和模板的使用,这有助于理解如何构建和管理NiFi的数据处理工作流。我们关注的是FlowFile生成器示例。FlowFile在NiFi中代表数据包,它包含了数据内容和元数据。`GenerateFlowFile`处理器是用于生成FlowFile的一个基本工具,可以生成包含随机或自定义内容的流文件,通常用于测试和模拟数据源。你可以配置其属性如生成文件的频率、大小和数量,以便于测试和性能评估。接着是`ReplaceText`处理器,它的作用是根据正则表达式查找并替换FlowFile内容中的特定文本,这是在数据处理流程中执行业务逻辑处理的关键步骤。你可以通过调整正则表达式和替换规则来实现各种文本转换。实际操作中,你可以先创建并配置`GenerateFlowFile`,设定生成文件的参数,然后启动它以产生数据。接下来,将`ReplaceText`处理器连接到`GenerateFlowFile`,设置替换规则,例如将所有内容替换为"hello world"。可以添加`PutFile`处理器,将处理后的数据写入指定的文件系统位置,并验证结果是否符合预期。在Nifi模板方面,模板是一种保存和重复使用NiFi数据流配置的方式。导入模板可以帮助快速复用已有的工作流,节省时间和提高效率。在示例中,模板文件是以XML格式存储的,包含了NiFi工作流的结构信息。你可以通过NiFi UI导入模板,然后在流程图中实例化它,以快速构建复杂的数据处理流程。通过这些示例,我们可以看到NiFi在数据处理中的
内容概要:本文围绕嵌入式设备中SSH安全连接的配置实践,深入探讨了在资源受限和网络不稳定的工业环境下,如何通过轻量化工具(如Dropbear)和优化配置实现高可靠的安全远程管理。文章系统介绍了嵌入式SSH的核心特点,包括轻量实现、受限网络适配、硬件级安全支持及工业协议兼容性;重点讲解了Dropbear的配置技巧,如禁用密码认证、选用高效加密算法、启用压缩传输以及结合TPM进行密钥存储;并通过工业控制器远程维护、IoT网关批量管理等实际应用场景展示了SSH在真实项目中的部署方式。此外,文中提供了详细的代码案例,涵盖autossh实现自动重连、反向隧道穿透NAT、开机自启动脚本等关键技术,强化了连接的稳定性与自动化能力。最后展望了SSH在边缘计算集成、抗量子加密和AI异常检测方面的未来发展方向。; 适合人群:从事嵌入式系统开发、物联网设备安全、工业自动化远程维护的相关技术人员,具备一定Linux系统和网络安全基础知识的工程师; 使用场景及目标:①为资源受限的嵌入式设备配置轻量级、高安全性的SSH服务;②在复杂网络环境中实现稳定、自动恢复的SSH隧道通信;③提升工业控制系统远程运维的安全性与可靠性; 阅读建议:建议结合实际嵌入式平台动手实践文中配置示例,重点关注Dropbear与autossh的整合应用,并根据具体硬件条件评估是否引入TPM等安全模块,同时关注后续边缘计算与量子安全的发展动态。
内容概要:本文是一份完整的电商用户行为数据分析与可视化实战项目指南,基于Python技术栈实现从数据模拟、清洗、多维度分析到可视化落地的全流程。项目围绕四大核心业务目标展开:用户活跃趋势分析、转化漏斗拆解、商品偏好挖掘以及RFM用户分层,使用Pandas进行数据处理,Matplotlib、Seaborn和Plotly实现静态与交互式可视化,并通过Jupyter Notebook完成代码开发与结果展示。所有代码均可复用,支持替换真实数据源,输出结果可用于运营汇报或实时监控。; 适合人群:具备Python基础的数据分析师、电商运营人员、初级数据科学家及对用户行为分析感兴趣的技术从业者;尤其适合工作1-3年希望提升实战能力的研发或运营岗位人员。; 使用场景及目标:① 分析用户日/周/时段活跃规律,优化营销活动投放时间;② 构建浏览→加购→下单→支付的转化漏斗,定位流失关键环节并提出优化策略;③ 挖掘商品品类、价格带及时段偏好,指导选品与库存管理;④ 基于RFM模型对用户分层,制定差异化的运营策略(如高价值用户留存、流失用户召回)。; 阅读建议:建议按照“环境搭建→数据生成→清洗→分析→可视化”的流程逐步实践,结合业务逻辑理解每一环节的数据处理方法,重点关注代码的可复用性和图表的实用性,同时尝试将分析框架迁移到真实业务场景中进行验证与调优。
内容概要:本文介绍了基于支持向量机(SVM)的电力短期负荷预测方法,重点实现了三种不同的SVM模型进行对比分析,包括最小二乘支持向量机(LSSVM)、标准粒基于支持向量机的电力短期负荷预测【三种方法】(Matlab代码实现)子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章提供了完整的Matlab代码实现,详细展示了数据预处理、模型构建、参数优化、预测输出及结果评估的全过程,旨在为电力系统负荷预测提供高精度、稳定可靠的建模方案。通过实际案例验证了三种方法在预测准确性与收敛性能上的差异,突出了智能优化算法在提升SVM预测能力方面的有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事电力负荷预测相关工作的工程技术人员。; 使用场景及目标:①掌握基于支持向量机的短期电力负荷预测建模流程;②学习如何利用粒子群优化算法优化SVM关键参数;③对比不同优化策略下SVM模型的预测性能,提升实际项目中的模型选型与调参能力;④为学术研究或工程项目提供可复现的代码参考和技术支撑。; 阅读建议:建议读者结合文中提供的Matlab代码逐模块运行与调试,重点关注数据归一化、参数寻优过程及预测结果可视化部分,深入理解各算法的核心机制。同时可尝试将模型迁移至其他时序预测场景,进一步拓展应用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值