---------数论---------
文章平均质量分 64
Lazer2001
天涯何处无芳草
只是白兔寻不到
展开
-
T解 湖南师大附中集训 模拟考试1
大家都很强,可与之共勉今天考了试,天哪什么叫差距。300分满分25分,不过最高的是175,CDQZ最高的是75。然而毕克毕姥爷,%%%,OrzOrz,随手一讲就是POJ最难的状压Dp。下面我们来赏析一下第一题B 君的教育 (Erziehung) 【题目描述】 B 君最近听说了一个很惊人的性质,设 p = −1+i,对于每个高斯整数n x + yi,我们都可以找到一个非负整数集合 S 满足∑ p原创 2017-03-19 21:20:28 · 424 阅读 · 1 评论 -
数论练习--日常更新
大家都很强, 可与之共勉。复习的我会写在知乎专栏啦!!! 知乎专栏原创 2017-11-28 17:31:15 · 493 阅读 · 0 评论 -
NOIP2014 D2T3 解方程 BZOJ3751 UOJ20 数论 秦九韶算法 玄学
大家都很强, 可与之共勉 。话说这是一道简单爆了的难题。【NOIP2014】解方程 已知多项式方程: a0+a1x+a2x2+...+anxn=0a_0+a_1x+a_2x^2+...+a_nx^n=0 求这个方程在[1,m][1,m]内的整数解(nn和mm均为正整数)。 输入格式 第一行包含22个整数nn、mm,每两个整数之间用一个空格隔开。 接下来的n+1原创 2017-08-26 21:30:35 · 482 阅读 · 0 评论 -
数论 高斯消元模板
大家都很强,可预与之共勉。高斯消元法可以用于解决n元一次方程组的方法。就是消元然后回代求解。# include <cstdio># include <algorithm>inline double fabs ( double a ) { return a > 0 ? a : -a ;}const int N = 105 ;const double eps = 1e-8 ;double原创 2017-08-19 08:20:01 · 325 阅读 · 0 评论 -
BZOJ - 1053 HAOI2007 反素数
大家都很强, 可与之共勉 。Description对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。 如果某个正整数x满足:g(x) > g(i) && 0 < i < x,则称x为反质数。例如,整数1,2,4,6等都是反质数。 现在给定一个数N,你能求出不超过N的最大的反质数么?Input一个数N(1<=N<=2,000,000,000)。Output不超过N的最大的原创 2017-07-02 10:06:24 · 2939 阅读 · 0 评论 -
[数论]中国剩余定理 CRT
代码大法好。class Crt{private: template <class T> inline T exgcd( T a, T b, T &x, T &y ) { if( !b ) { x = 1, y = 0; return a; } T gcd = exgcd( b,原创 2017-03-23 22:18:06 · 674 阅读 · 0 评论 -
拉格朗日插值法(代码实现及部分证明)
6来飞起 #include "cstdio"const int MAXN = (int) 1e5 + 5;struct point { double x, y;} list[MAXN];int n, m;double x;double Lagrange( point *list, int qnum, double x ) { double rt = 0, tmp = 1.0原创 2017-03-18 11:54:40 · 2365 阅读 · 1 评论 -
题解 BZOJ-2154 莫比乌斯反演
2154: Crash的数字表格Time Limit: 20 Sec Memory Limit: 259 MBDescription今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数原创 2017-03-23 13:56:21 · 370 阅读 · 0 评论 -
莫比乌斯反演函数
首先我们应该明确概念:1,卷积: 设是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算定义为 可以证明,卷积运算满足: 1)交换律: 2)结合律: 证明: 考察两边作用在n上,左边是 右边是 故两边相等。 3)存在单位元使得 我们需要 故不难猜到应该定义为! 事实上,直接验证可得 以上说明数论函数在卷积意义下构成一个交换群。2,乘法单位元 上面原创 2017-03-22 14:58:58 · 662 阅读 · 3 评论 -
扩展欧拉定理的证明 欧拉定理的推广
大家都很强, 可与之共勉 。我的知乎专栏–欧拉定理推广的证明原创 2017-11-29 11:00:12 · 1180 阅读 · 0 评论