线段树专题 POJ3468 A Simple Problem with Integers

题意:n个点,m个操作,两种操作类型,C X Y K 表示区间[x,y]上每个点值加k,Q X Y 求区间[x,y]的和


分析:线段树区间求和,裸模板


注意:结果会超int,要用long long 表示,如果是在hust上交结果要用%I64d,poj的话则用%lld


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include<vector>
#pragma comment(linker,"/STACK:1024000000,1024000000")
using namespace std;
const int maxn = 1e5+5;
long long sum[maxn*4];
long long lazy[maxn*4];
int num[maxn];
void up(int rt){
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void down(int l,int r,int rt){
    if(!lazy[rt]) return;
    int mid=(l+r)/2;
    lazy[rt<<1]+=lazy[rt];
    lazy[rt<<1|1]+=lazy[rt];
    sum[rt<<1]+=lazy[rt]*(mid-l+1);
    sum[rt<<1|1]+=lazy[rt]*(r-mid);
    lazy[rt]=0;
}
void build(int l,int r,int rt){
    lazy[rt]=sum[rt]=0;
    if(l==r){
        sum[rt]=num[l];
        return;
    }
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
    up(rt);
}
void update(int L,int R,int k,int l,int r,int rt){
    if(L<=l&&r<=R){
        lazy[rt]+=k;
        sum[rt]+=(r-l+1)*k;
        return;
    }
    down(l,r,rt);
    int mid=(l+r)>>1;
    if(L<=mid) update(L,R,k,l,mid,rt<<1);
    if(R>mid) update(L,R,k,mid+1,r,rt<<1|1);
    up(rt);
}
long long query(int L,int R,int l,int r,int rt){
    if(L<=l&&r<=R) return sum[rt];
    down(l,r,rt);
    int mid=(l+r)>>1;
    long long  ret = 0;
    if(L<=mid)  ret+=query(L,R,l,mid,rt<<1);
    if(R>mid)   ret+=query(L,R,mid+1,r,rt<<1|1);
    up(rt);
    return ret;
}
int main()
{
    int n,q;
    while(scanf("%d%d",&n,&q)!=EOF){
        for(int i=1;i<=n;i++) scanf("%d",&num[i]);
        build(1,n,1);
        while(q--){
            char c;
            int x,y,k;
            scanf(" %c",&c);
            if(c=='C'){
                scanf("%d%d%d",&x,&y,&k);
                update(x,y,k,1,n,1);
            }
            else{
                scanf("%d%d",&x,&y);
                printf("%lld\n",query(x,y,1,n,1));
            }
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值