题意:n个点,m个操作,两种操作类型,C X Y K 表示区间[x,y]上每个点值加k,Q X Y 求区间[x,y]的和
分析:线段树区间求和,裸模板
注意:结果会超int,要用long long 表示,如果是在hust上交结果要用%I64d,poj的话则用%lld
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include<vector>
#pragma comment(linker,"/STACK:1024000000,1024000000")
using namespace std;
const int maxn = 1e5+5;
long long sum[maxn*4];
long long lazy[maxn*4];
int num[maxn];
void up(int rt){
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void down(int l,int r,int rt){
if(!lazy[rt]) return;
int mid=(l+r)/2;
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
sum[rt<<1]+=lazy[rt]*(mid-l+1);
sum[rt<<1|1]+=lazy[rt]*(r-mid);
lazy[rt]=0;
}
void build(int l,int r,int rt){
lazy[rt]=sum[rt]=0;
if(l==r){
sum[rt]=num[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
up(rt);
}
void update(int L,int R,int k,int l,int r,int rt){
if(L<=l&&r<=R){
lazy[rt]+=k;
sum[rt]+=(r-l+1)*k;
return;
}
down(l,r,rt);
int mid=(l+r)>>1;
if(L<=mid) update(L,R,k,l,mid,rt<<1);
if(R>mid) update(L,R,k,mid+1,r,rt<<1|1);
up(rt);
}
long long query(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R) return sum[rt];
down(l,r,rt);
int mid=(l+r)>>1;
long long ret = 0;
if(L<=mid) ret+=query(L,R,l,mid,rt<<1);
if(R>mid) ret+=query(L,R,mid+1,r,rt<<1|1);
up(rt);
return ret;
}
int main()
{
int n,q;
while(scanf("%d%d",&n,&q)!=EOF){
for(int i=1;i<=n;i++) scanf("%d",&num[i]);
build(1,n,1);
while(q--){
char c;
int x,y,k;
scanf(" %c",&c);
if(c=='C'){
scanf("%d%d%d",&x,&y,&k);
update(x,y,k,1,n,1);
}
else{
scanf("%d%d",&x,&y);
printf("%lld\n",query(x,y,1,n,1));
}
}
}
}