「AHOI2013」 连通图 - 线段树分治+并查集

题目描述

给定一个连通的无向图和若干个小集合,每个小集合包含一些边。对于每个集合,你需要确定将集合中的边从原来的无向图中删除后该图是否保持连通。

一个图是连通的当且仅当任意两个不同的点之间存在一条路径连接他们。

输入格式

输入的第一行包含两个整数n和m(1<=n<=10000, 1<= m <= 100000),表示无向图的点数和边数,每个点从1到n标号。

接下来的m行表示图的每条边,每行包含两个整数a和b——一条边连接的两个端点的标号。保证每对顶点最多被一条边连接。没有一条边连接两个相同的顶点。每条边按照输入的顺序标号为1到m。

接下来的一行包含一个整数k(1<=k<=100000),表示需要测试的小集合的个数。接下来的k行每行描述一个小集合。每行的第一个数c(1<=c<=4)表示集合中边的个数,接下来有c个整数表示集合中边的标号,保证集合中的整数互不相同。

输出格式

输出k行,每行对应一个小集合的测试结果。

第i行包含“Connected”(没有引号),如果给定的图去掉对应的集合中的边仍然连通,否则应该包含一个“Disconnected”。

分析

对于第 i i i个时间的询问,其中的每一条边可以看是在前面某次询问中有这条边之后一直没有询问这条边,设这条边为 x x x,时间点为 j j j。那么题目可以转化为一条边 x x x在时间区间 [ j , i − 1 ] [j,i-1] [j,i1]存在,第 i i i个时间点删除,在第 i i i个时间点查询图的连通性。这明显是线段树分治的模型,直接套上就行了。同样用可撤销并查集去维护。

需要提一点的是,这里判断整个图是否连通可以用第一个节点的根的 s i z e size size判断,即判断 s i z e [ g e t f ( 1 ) ] size[getf(1)] size[getf(1)]是否等于 n n n

代码

#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
const int N=100005;
const int M=400005;
struct Edge {int x,y,op;}e[M];
int cnt,n,m,num;
int tm[M],q[M];
int f[N],sz[N],top;
vector<int> v[M<<2];
struct Stack {int x,y;}st[N];
void reset(){for(int i=1;i<=n;i++)f[i]=i,sz[i]=1;}//初始化 
int getf(int x){while (x^f[x]) x=f[x];return x;}//找父亲 
bool Judge() {return sz[getf(1)]==n;}//判断是否连通 
void merge(int x,int y) {//合并两个集合 
	x=getf(x),y=getf(y);
	if (x==y) return;
	if (sz[x]>sz[y]) swap(x,y);
	f[x]=y;
	sz[y]+=sz[x];
	st[++top]=(Stack){x,y};
}
void undo(int k) {//撤销到k次合并操作 
	while (top>k) {
		int x=st[top].x,y=st[top].y;
		top--;
		f[x]=x;
		sz[y]-=sz[x];
	}
}
void Add(int p,int l,int r,int L,int R,int x) {
	if (L<=l&&r<=R) {//完全包含,直接丢进vector中 
		v[p].push_back(x);
		return;
	}
	int mid=(l+r)>>1;
	if (L<=mid) Add(p<<1,l,mid,L,R,x);
	if (R>mid) Add(p<<1|1,mid+1,r,L,R,x);
}
void Solve(int p,int l,int r) {
	int si=v[p].size(),tp=top;
	for (int i=0;i<si;i++) {//依次添加 
		int x=e[v[p][i]].x,y=e[v[p][i]].y;
		merge(x,y);
	}
	if (l==r) {//叶子节点,判断并输出 
		if (q[l]) puts(Judge()?"Connected":"Disconnected");
	} else {
		int mid=(l+r)>>1;
		Solve(p<<1,l,mid);
		Solve(p<<1|1,mid+1,r);
	}
	undo(tp);//撤销 
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;i++) {
		int u,v;
		scanf("%d%d",&u,&v);
		e[i]=(Edge){u,v};
		tm[i]=1;
	}
	scanf("%d",&num);
	for (int i=2;i<=num+1;i++) {
		int c;
		scanf("%d",&c);
		for (int j=1;j<=c;j++) {
			int x;
			scanf("%d",&x);//直接加入时间线段树中 
			Add(1,1,num+1,tm[x],i-1,x);
			tm[x]=i+1;
		}
		q[i]=1;
	}
	for (int i=1;i<=m;i++)
		if (tm[i]<=num+1)//对于没有结束时间的边特殊处理 
			Add(1,1,num+1,tm[i],num+1,i);
	reset();
	Solve(1,1,num+1);//递归直接输出答案 
	return 0;
}
AHOI2001是一种用于处理模式匹配和字符串搜索的经典算法,全称为"Another Happy Odyssey in 2001"。它通常应用于构建高效、空间优化的KMP(Knuth-Morris-Pratt)算法的一种改进版本。这种有限自动机常用于处理字符串搜索问题,尤其是在处理大量文本数据时。 关于题目代码的具体内容,这通常涉及到编程竞赛或算法实现题。通常,你需要编写一段程序,包括定义一个有限状态机(Finite Automaton),处理输入字符串和模式串,并根据AHOI2001算法来查找模式是否在原字符串中。关键部分会涉及如何创建前缀函数表、动态规划和自适应策略。 由于这不是一个直接的答案,下面是一个简化版的代码框架示例(假设用Python): ```python class AhoCorasickAutomaton: def __init__(self, patterns): self.prefix_func = self.build_prefix_function(patterns) def build_prefix_function(self, patterns): # 建立前缀函数表的计算过程... pass def search(self, text): index = 0 for pattern in patterns: while index < len(text) and index + len(pattern) <= len(text): if self.match(text[index:], pattern): return True index += self.prefix_func[pattern] return False def match(self, text, pattern): # 匹配函数,比较两个字符串是否相等... pass # 使用示例: patterns = ['AB', 'AC'] # 输入模式列表 automaton = AhoCorasickAutomaton(patterns) text = 'ABCABCD' # 待搜索的字符串 if automaton.search(text): print("Pattern found") else: print("Pattern not found")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值