算法过程:
假设数据序列的规模为 n,需要采样的数量的为 k。
首先构建一个可容纳 k 个元素的数组,将序列的前 k 个元素放入数组中。
然后从第 k+1 个元素开始,以 k/n 的概率来决定该元素是否被替换到数组中(数组中的元素被替换的概率是相同的)。 当遍历完所有元素之后,数组中剩下的元素即为所需采取的样本。
public class ReservoirSamplingTest {
private int[] pool; // 所有数据
private final int N = 100000; // 数据规模
private Random random = new Random();
@Before
public void setUp() throws Exception {
// 初始化
pool = new int[N];
for (int i = 0; i < N; i++) {
pool[i] = i;
}
}
private int[] sampling(int K) {
int[] result = new int[K];
for (int i = 0; i < K; i++) { // 前 K 个元素直接放入数组中
result[i] = pool[i];
}
for (int i = K; i < N; i++) { // K + 1 个元素开始进行概率采样
int r = random.nextInt(i + 1);
if (r < K) {
result[r] = pool[i];
}
}
return result;
}
@Test
public void test() throws Exception {
for (int i : sampling(100)) {
System.out.println(i);
}
}
}