机器学习
伯爵er
这个作者很懒,什么都没留下…
展开
-
用scala spark实现字符串类型cosine相似度计算
计算字符串类型值相似度原创 2023-02-20 18:33:39 · 500 阅读 · 0 评论 -
回归树算法思想
1.算出每个属性的residuals 1.1针对单个属性的算出threshold 2.使用redidual最小的属性做根节点 3.限制每个叶子节点中样本的数量来减少过拟合原创 2020-03-06 18:20:48 · 287 阅读 · 0 评论 -
决策树缺失值处理
import csv from sklearn.feature_extraction import DictVectorizer from sklearn import preprocessing from sklearn import tree film_data = open('film.csv', 'rt') reader = csv.reader(film_data) # 表头信息 he...原创 2020-02-20 12:03:24 · 1595 阅读 · 1 评论 -
逻辑回归损失函数
对数损失/二元交叉熵损失 Cost(hθ(x),y)={−log(hθ(x))if y=1−log(1−hθ(x))if y=0Cost(h_{θ}(x),y)= \begin{cases} -log(h_{θ}(x))& \text{if y=1}\\ -log(1-h_{θ}(x))& \text{if y=0} \end{cases}Cost(hθ(x)...原创 2020-02-18 16:26:16 · 336 阅读 · 0 评论 -
tf.truncated_normal的用法
下面的代码功能是产生一个8x8的矩阵,数据服从正太分布,均值为0,标准差为1,并且(产生的数据-均值)<=2*标准差 import tensorflow as tf; import numpy as np; import matplotlib.pyplot as plt; c = tf.truncated_normal(shape=[8,8], mean=0, stddev=1) w...原创 2019-03-16 22:59:54 · 1012 阅读 · 0 评论 -
TensorFlow中variable与placeholder区别
#placeholder是一个容器,需要以字典的形式赋值; import tensorflow as tf #placeholder是一个容器,需要赋值(以字典的形式) input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with...原创 2019-03-15 23:13:39 · 246 阅读 · 1 评论 -
关于使用Opencv sift出现版权不能运行的解法
这两个版本不存在版权问题 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python == 3.4.2.16 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16 运行结果: ...原创 2019-03-11 19:18:51 · 2407 阅读 · 2 评论 -
梯度下降求theta值
import numpy as np import matplotlib.pyplot as plt def jfunction(theta0, theta1, x, y, m): h = theta0 + theta1 * x j, j1 = 0, 0 for i in range(m): j1 += (h[i] - y[i]) ** 2 j =...原创 2018-11-07 16:18:01 · 774 阅读 · 0 评论 -
对误差的最大似然估计
今天看了线性回归的视频,在看到对误差求似然估计函数的时候感觉很不解: 为啥对误差的似然函数越大越好? Picture1:真实值y Picture2:误差ε服从高斯分布: 误差ε是独立并且具有相同的分布,并且服从均值为0方差为σ²的高斯分布 如图:Picture3: 当ε取0附近的时候p(ε)值最大。可知ε->0,ε的取值处于0的附近;那么也就是说p(ε)的值要越大越好。从而似然函数越大...原创 2018-11-02 13:48:07 · 1540 阅读 · 0 评论 -
python解正规方程
正规方程解出向量原创 2018-11-06 18:20:13 · 1110 阅读 · 0 评论 -
最小二乘法
最小二乘法可以:拟合最优超平面,使得误差和最小。 I.微积分求解最优超平面 情景,假设横坐标代表股票市盈率(PE),纵坐标代表股价(SP),已知三点(1,1)(2,3)(3,2),需要通过PE预测SP,求最优预测直线,这是个线性回归问题,下面通过最小均方误差和通过微积分求出该直线。 1.设直线为:y=ax+b 2.最小均方误差和为:(a+b-1)²+ (2a+b-2)²+(3a+b-2)²= 14...原创 2018-11-01 22:33:00 · 245 阅读 · 0 评论