- 创建字典的三种方法:
- 1
aInfo = {'Wangdachui': 3000, 'Niuyun':2000, 'Linling':4500, 'Tianqi':8000} info = [('Wangdachui',3000), ('Niuyun',2000), ('Linling',4500), ('Tianqi',8000)] bInfo = dict(info)
- 2
cInfo=dict([['Wangdachui',3000], ['Niuyun',2000], ['Linling',4500], ['Tianqi',8000]])
- 3
#创建员工信息表时将所有员工工资默认值设定为3000 aDict = {}.fromkeys(('Wangdachui', 'Niuyun', 'Linling', 'Tianqi'),3000)
- 1
- 已经有姓名列表和工资表,如何生成字典类型的员工信息表:
names = ['Wangdachui', 'Niuyun', 'Linling', 'Tianqi'] salaries = [3000, 2000, 4500, 8000] dict(zip(names,salaries))
- 字典的使用
aInfo['Niuyun']#键值查找 aInfo['Niuyun']=9999#aInfo里面的值存在的则是进行更新,不存在的则是进行添加 'Mayun' in aInfo#成员判断,返回的值是true or false del aInfo['Fuyun']#删除字典成员 len()#计算字典内建的长度 hash()#计算字典内的进行不同的判断 aInfo.clear() copy() fromkeys() get() items() keys() pop() setdefault() update() values()
-
集合
set('XX')#可变集合 frozenset('XX')#不可变集合
重点记忆部分数学运算符合:其他部分与大部分其他语言的编码一致 | 数学符合 | python | | :------: | :----: | | 属于 | in | | 不属于 | not in | 集合内建函数 | 面向所有集合 | 面向可变集合 | | :---------------------: | :----------------------------: | | s.issubset(t) | update(i) | | issuperset(t) | intersection_update(t) | | union(t) | difference_update(t) | | intersection(t) | symmetric_difference_update(t) | | difference(t) | add(obj) | | symmetric_difference(t) | remove(obj) | | copy() | discard(obj) | | | pop();clear() |
- 扩展库SCIPY
- python原有数据结构的变化
- ndarray(N维数组)
- Series(变长字典)
- DataFrame(数据框)
- Numpy–強大的ndarray对象和ufunc函数,无缝对接数据库
- scipy–基于Numpy的数据计算工具和图像处理软件
- Matplotlib–二维绘图库
- pandas–切片和读写多种文件格式功能
- python原有数据结构的变化
- NDArray
• 用list和tuple等数据结构表示数组- 一维数组 list = [1,2,3,4]
- 二维数组 list = [[1,2,3],[4,5,6],[7,8,9]]
• array模块 - 通过array函数创建数组, array.array(“B”, range(5))
- 提供append、 insert和read等方法
– 维度( dimensions)称为轴
( axes),轴的个数称为秩( rank)
– 基本属性
• ndarray.ndim(秩)
• ndarray.shape(维度)
• ndarray.size(元素总个数)
• ndarray.dtype(元素类型)
• ndarray.itemsize(元素字节大小)
常用函数例子dot 矩阵内积 linalg.det 行列式 linalg.inv 逆矩阵 linalg.solve 多元一次方程组求根 linalg.eig 求特征值和特征向量 sum mean :----: :-----: std var min max argmin argmax cumsum cumprod
- SERIES
• 基本特征- 类似一维数组的对象
- 由数据和索引组成
- DATAFRAME
• 基本特征- 一个表格型的数据结构
- 含有一组有序的列(类似于index)
- 大致可看成共享同一个index的Series集合
data = {'name': ['Wangdachui', 'Linling', 'Niuyun'], 'pay': [4000, 5000, 6000]} frame = pd.DataFrame(data)