编译在ESXi 5.1下可用的nano原网址失效,把内容转贴过来备查

原网址:
http://www.kioptrix.com/blog/a-few-nice-esxi-5-5-binaries/

过程可以借鉴但是
一、按下面文章的介绍
https://damiendebin.net/blog/2013/12/06/esxi-5-dot-1-and-rsync/
rsync 3.0.9在ESXi下使用会有问题,最低得是3.1.0,上面网页上有编译好的rsync 3.1.0可下载
二、提供CentOS3和CentOS4的yum的源也失效了
http://mirror.hmc.edu/centos/

转贴:
---------------------------------------------------------------------
A few nice ESXi 5.5 binaries
Category: IT, kioptrix, tutorials / Tags: no tag /	Add Comment
So it has been a while hasn’t it? I really do like having a blog, but life/work keeps getting in the way. It’s not from a lack of subject matter, it really is just about time. At the time of this writing, it’s November 30th so hoping to get this out there today.

It’s funny that my first post, in what seems like an eternity, won’t be security related. Still doesn’t mean I can’t share stuff, regardless if some find it interesting or not. It’s my blog damn it!
If I want to post pictures of cats into BDSM I shall!… ANYwho.

To start off, I really like virtual machines… The flavour I mostly use at home is VMware’s ESXi. Now before anyone gets all huffy, don’t worry I’ll be giving you more reasons to hate me. I choose VMware for a few reasons, mostly it’s what I’ve used in previous places of employment, and I also had hardware to run it. So I figured I’d learn it.

One thing any ESXi user has had to do at some point, is log into via ssh in the host…then the fun starts, file editing.
Personally, I prefer “nano” over “vi” why? Because I keep forgetting “vi” commands. As simple as that. Go ahead, hate me for it.

Going to the googles I figured someone’s bound to have uploaded a file.. or something. Apparently not. I even thought about it really really hard for 24 hours, and it didn’t appear on SourceForge nor Github. So I figured I’d try my hand at compiling “nano” for use on ESXi. Much like this guy here: rsync statically linked binary.
Mind you, I’m not a coder/dev type person. No gcc guru here, just a system admin. For many this would’ve been a walk in the park. Wasn’t so simple for me. Something new is always hard, it’s called trying\learning.

After much reading, trial & error I finally got a functioning “nano” text editor working on my ESXi 5.5 host. Hence the blog post of me whining, and me showing how I did it.

As per the above linked tutorial for “rsync”, you’ll need a few things in order to get this done.
Grocery list:

CentOS 3.9 ISO
nano source code from gnu.org
And this…
Please keep in mind the OS is rather old, and may contain vulnerable software by default. So minimal usage… no cats.

Following the post on Kickinass, we need to adjust the repositories in order to get our VM ready to compile.

# Lets point those repos to hmc.edu instead of centos.org At time of writing they still worked
[root@localhost root]# perl -pi -e “s/centos\.org/hmc.edu/g” /etc/yum.conf

# Next let’s remove GPG check (yeah I know)
[root@localhost root]# sed -i “s/gpgcheck\=1/gpgcheck\=0/g” /etc/yum.conf

# Install gcc & make etc.
[root@localhost root]# yum groupinstall ‘Development Tools’
pretty lines…

Next get nano’s source code, and transfer it over to your CentOS virtual machine. Extract it, and we’re at the half way mark!
[root@localhost nano-2.4.3]# ./configure
pretty lines…
[root@localhost nano-2.4.3]# make EXEEXT=”-static” CFLAGS=”-g -02 -Wall -static”
more pretty lines…
[root@localhost nano-2.4.3]# ls src/nano-static

There you have it, a statically linked binary of “nano” that will work on ESXi 5.5. Copy it over to your host, and you should be able to edit files without constantly screaming & swearing at your screen because you’re spending more time on Google finding “vi” commands and actual editing.

nano running on esxi

As I’m far from being the most knowledgable about this stuff, if anyone sees anything wrong, inaccurate pretty sure you can find me somehow. Just don’t expect much of a reply if you send an email to my @kioptrix.com address. Best find another place.

So just in case you don’t want, or just can’t, to go through all of this. I’ve made my CentOS VM available for download. Development tools installed, source code for nano a few others already compiled. You can use it to compile yourself a “nano”, or anything else you may need. If you don’t want to go through all the hassle, I’ve made a few of the binaries available for download here.

CentOS VM 652Megs
username: root
password: !!abc123
MD5 (CentOS-3.9.tar.gz) = 99d451b6da2d55630b7c8f5b6aaf46a6

–== Some pre-compiled tools that will work on ESXi 5.5 ==–

nano-static 2.4.3
MD5 (nano-static-2.4.3.tar.gz) = 16b1a3003d9d02a99d5385c986c94ed3
rsync-static 3.0.9
MD5 (rsync-static-3.0.9.tar.gz) = 69d2220fbcaddc0ff441c223400d0aa7
bash-static 2.05
MD5 (bash-static-2.05.tar.gz) = 7a6d03f673ff5d5a9b49eecd2b7cc6ff
bc-1.04-static*
MD5 (bc-1.04.tar.gz) = 02b8f00b12015758d7994c73ff0d3043
These have been tested and working on my ESXi 5.5 install, hope someone found this useful.
* Not included in VM

Ref.:
http://www.kickinass.net/vmware-esxi-5-1-rsync-3-0-9-statically-linked-binary-erstellen/
http://www.virtuallyghetto.com/2011/02/how-to-compile-statically-linked-rsync.html

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值