已知LFCW信号采用去斜处理的方法,实现低采样高分辨。
这里对去斜之后的分辨率进行分析。
假设调频周期为
T
w
Tw
Tw ,调频带宽为
B
w
Bw
Bw,去斜处理后采样时长为
T
T
T,且满足
T
≤
T
w
T\leq Tw
T≤Tw
分析静止、两个点目标,距离分别为
R
1
R_1
R1和
R
2
R_2
R2。
对应的差拍频率分别为
f
Δ
,
1
=
k
2
R
1
c
f_{\Delta,1}=k\frac{2R_1}{c}
fΔ,1=kc2R1
f
Δ
,
2
=
k
2
R
2
c
f_{\Delta,2}=k\frac{2R_2}{c}
fΔ,2=kc2R2
因为采样时长为
T
T
T,所以频率分辨率为
Δ
f
=
1
/
T
\Delta f=1/T
Δf=1/T。
若要两点可区分,必须满足
∣
f
Δ
,
1
−
f
Δ
,
2
∣
≥
Δ
f
|f_{\Delta,1}-f_{\Delta,2}|\geq \Delta f
∣fΔ,1−fΔ,2∣≥Δf
2
B
w
Δ
R
c
∗
T
w
≥
1
T
\frac{2Bw\Delta R}{c*Tw}\geq \frac{1}{T}
c∗Tw2BwΔR≥T1
Δ
R
≥
T
w
T
∗
c
2
B
w
\Delta R\geq \frac{Tw}{T}*\frac{c}{2Bw}
ΔR≥TTw∗2Bwc
所以只有当采样周期为调频周期的时候,分别率最小,是
Δ
R
=
c
2
B
w
\Delta R = \frac{c}{2Bw}
ΔR=2Bwc
否则分别率将大于此最小分辨率。
LFCW分辨率分析
最新推荐文章于 2021-10-31 15:26:38 发布