- 博客(11)
- 收藏
- 关注
原创 论文笔记:Learning Deep Features for Discriminative Localization
目的:实现弱监督的特征定位。 使用方法:使用global average pooling的一般分类网络。 最后结果:使用googlenet-GAP弱监督网络可以达到全监督Alexnet的定位水平。并能实现良好的扩展。 1.Abstract本文revisit了GAP方法。将它用在定位分类上,发现这个方法保留了部分定位信息,而且在ILSVRC2014上能达到37.1%的top5错误率。introd
2017-07-18 20:06:48 1128
原创 caffe模型 在 digits上的finetune
之前用命令行进行finetune感觉不错,英伟达好不容易搞出这个可视化工具,结果不能进行微调岂不是滑天下之大稽? 首先解释一下finetune是什么,比如说有一个不知天高地厚的小团队要做另外一个数据集的分类。但是样本只有200多张。这样的数据量是不可能做到很精确的分类的。突然这个团队想到ImageNet有一千万张图片,有土豪已经训练好了。拿这个训练好的模型改吧改吧直接用在当前的应用场景,这就叫做
2017-05-14 13:30:08 569
原创 caffe命令行的使用实例
这次转战ubuntu虚拟机,用cpu only的模式搞事情。首先做一下图片的文件格式转换,图像文件转对应db的方式:convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME需要带四个参数:FLAGS: 图片参数组,后面详细介绍 -gray: 是否以灰度图的方式打开图片。程序调用opencv库中的imread()函数来打开图片,默认为false
2017-05-10 18:26:55 373
转载 caffe命令行解析
caffe提供三种接口,一般是c++、python、matlab。一般可执行文件都是放在 ./build/tools/ 文件夹内,在命令行执行命令必须现在该目录下。(也有可能不在说不定在别的地方,找caffe.exe就对了) caffe的命令形式如下 caffe <command> <args>其中的command有这样四种: train 训练或finetune模型(model), test
2017-05-08 13:34:25 402
转载 caffe学习-第三天
solver是传说中的核心中的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为caffe train --solver=*_slover.prototxt在Deep Learning中很少能算出解析解,所以一般是用数学方法找到最优解就好。所以主要是通过前向算法和后向算法分别计算结果和反向推到梯度,以此来减小误差。从数学的角度上讲就是用一系列线性非
2017-05-08 12:48:10 377
原创 digits —segmentation demo
digits 自带一个分割项目,这里记录一下过程项目的目的是为了将空心的三角形变成实心的,也就是一个边缘检测的过程,但是又稍微不一样。这里是将内部和外部区分的一个过程。数据库的建立: 分割的数据样本的要求是一个特征数据库、一个标签数据库,二者的图像尺寸一致,输入图像可以是任何形式的,而输出图像一般都是二值化的。这里建立的数据库是由脚本自动生成的。 由于是在windows下运行,会有很多不便,所有
2017-05-05 11:50:49 687
转载 caffe学习:第二天
caffe中只有blob,layer,net这几个东西 深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯
2017-05-04 17:07:58 204
转载 caffe学习:第一天
安装和测试过程已经写过就不说了。训练一个模型,模型最重要的就是学会编写prototxt。整个系统最核心的就是i两个prototxt文件,一个表示层结构,一个控制全局参数。训练出来得到caffemodel文件。 数据层是模型的入口,有LevelDB,LMDB,或者直接图像文件和hdf5文件。 这次就把层的结构记录下来。数据层及参数layer { name: "cifar" type: "D
2017-05-03 17:35:52 333
原创 caffe实战,deep retinal image understanding 实现
安装好caffe之后在官方网站下载model和script和image。分别代表模型,直接使用的脚本和测试图像。 放到/caffe/DRIU/中。 打开test.pyimport numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import scipy.misc from PIL import Imag
2017-05-03 16:11:38 1158 1
原创 caffe使用过程+digits在windows下的安装和运行
一。模型基本组成想要训练一个caffe模型,需要配置两个文件,包含两个部分:网络模型,参数配置,分别对应*.prototxt , ****_solver.prototxt文件。Caffe模型文件解析:预处理图像的leveldb构建 输入:一批图像和label (2和3) 输出:leveldb (4) 指令里包含如下信息: conver_imageset (构建leveldb的可运行程序) tr
2017-04-28 00:31:47 1986 1
原创 Caffe+cuda7.5+cuDNN v5.1 在windows10下安装
一般来说caffe很少在windows下安装,能在ubuntu就在ubuntu,但是之前安装双系统瞎折腾导致两个系统同时不能用,搞了一天重装系统后现在只能使用windows硬装。 目前看到的windows的安装方案分为两种,第一种是伯克利官方伯克利官方的安装方案,另外一种是 微软的安装方案(目前停止维护)当然还有快糙好猛的happynear方案 (微软的方案傻瓜版)。看介绍还是happyne
2017-04-27 22:11:35 895
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人