MPI之聚合通信-Scatter,Gather,Allgather

MPI
一、 MPI_Scatter

MPI_Scatter与MPI_Bcast非常相似,都是一对多的通信方式,不同的是后者的0号进程将相同的信息发送给所有的进程,而前者则是将一段array 的不同部分发送给所有的进程,其区别可以用下图概括:
这里写图片描述
0号进程分发数据的时候是根据进程的编号进行的,array中的第一个元素发送给0号进程,第二个元素则发送给1号进程,以此类推。

MPI_Scatter(
    void* send_data,//存储在0号进程的数据,array
    int send_count,//具体需要给每个进程发送的数据的个数
    //如果send_count为1,那么每个进程接收1个数据;如果为2,那么每个进程接收2个数据
    MPI_Datatype send_datatype,//发送数据的类型
    void* recv_data,//接收缓存,缓存 recv_count个数据
    int recv_count,
    MPI_Datatype recv_datatype,
    int root,//root进程的编号
    MPI_Comm communicator)

通常send_count等于array的元素个数除以进程个数。

二、 MPI_Gather
MPI_Gather和MPI_scatter刚好相反,他的作用是从所有的进程中将每个进程的数据集中到根进程中,同样根据进程的编号对array元素排序,如图所示:
这里写图片描述
其函数为:

MPI_Gather(
    void* send_data,
    int send_count,
    MPI_Datatype send_datatype,
    void* recv_data,
    int recv_count,//注意该参数表示的是从单个进程接收的数据个数,不是总数
    MPI_Datatype recv_datatype,
    int root,
    MPI_Comm communicator)

三、MPI_Allgather
当数据分布在所有的进程中时,MPI_Allgather将所有的数据聚合到每个进程中。
这里写图片描述

MPI_Allgather(
    void* send_data,
    int send_count,
    MPI_Datatype send_datatype,
    void* recv_data,
    int recv_count,
    MPI_Datatype recv_datatype,
    MPI_Comm communicator)

四、实例
问题描述:
我们的函数需要在每个进程中取一个数字,并返回其所有流程中所有其他数字的相关排名。 与此同时,我们将需要其他杂项信息,例如正在使用的通信器以及正在排名的数字的数据类型。
整体函数表示:

TMPI_Rank(
    void *send_data,
    void *recv_data,
    MPI_Datatype datatype,
    MPI_Comm comm)

TMPI_Rank接收一个包含一个datatype类型的send_data缓冲区。 recv_data在包含send_data的rank值的每个进程上只收到一个整数。 comm变量是正在进行排名的通信器。

解决并行排序问题的第一步是排序所有进程的所有数字。 这必须完成,以便我们可以在整个数字集中找到每个数字的排名。 有很多方法可以做到这一点。 最简单的方法是将所有数字收集到一个进程并对数字进行排序。

void *gather_numbers_to_root(void *number, MPI_Datatype datatype,
                             MPI_Comm comm) {
  int comm_rank, comm_size;
  MPI_Comm_rank(comm, &comm_rank);
  MPI_Comm_size(comm, &comm_size);

  // 根据使用的数据类型,给根进程分配size
  int datatype_size;
  MPI_Type_size(datatype, &datatype_size);
  void *gathered_numbers;
  if (comm_rank == 0) {
    gathered_numbers = malloc(datatype_size * comm_size);
  }

  // 收集根进程的所有数字
  MPI_Gather(number, 1, datatype, gathered_numbers, 1,
             datatype, 0, comm);

  return gathered_numbers;
}

根进程必须在此函数中收集comm_size数字,所以它malloc一个datatype_size * comm_size长度的数组。在使用MPI_Gather在根进程上收集数字之后,数字必须在根进程中进行排序,以便可以确定其编号。

先定义一个结构体

typedef struct {
  int comm_rank;
  union {
    float f;
    int i;
  } number;
} CommRankNumber;

排序使用C标准库函数:

int *get_ranks(void *gathered_numbers, int gathered_number_count,
               MPI_Datatype datatype) {
  int datatype_size;
  MPI_Type_size(datatype, &datatype_size);

  //将收集的数字数组转换为CommRankNumbers数组。
  // 这使我们能够对数字进行排序,并保留拥有数字的进程信息。
  CommRankNumber *comm_rank_numbers = malloc(
    gathered_number_count * sizeof(CommRankNumber));
  int i;
  for (i = 0; i < gathered_number_count; i++) {
    comm_rank_numbers[i].comm_rank = i;
    memcpy(&(comm_rank_numbers[i].number),
           gathered_numbers + (i * datatype_size),
           datatype_size);
  }

  // 根据数据类型进行排序
  if (datatype == MPI_FLOAT) {
    qsort(comm_rank_numbers, gathered_number_count,
          sizeof(CommRankNumber), &compare_float_comm_rank_number);
  } else {
    qsort(comm_rank_numbers, gathered_number_count,
          sizeof(CommRankNumber), &compare_int_comm_rank_number);
  }

  // comm_rank_numbers被排序,为每个进程创建一个编号数组。 该数组的第i个元素包含进程i发送的数字的编号。数字排序后,我们必须以正确的顺序创建一个排列数组,以便它们可以scatter回请求进程。
  int *ranks = (int *)malloc(sizeof(int) * gathered_number_count);
  for (i = 0; i < gathered_number_count; i++) {
    ranks[comm_rank_numbers[i].comm_rank] = i;
  }

  // Clean up and return the rank array
  free(comm_rank_numbers);
  return ranks;
}

综合可得:

int TMPI_Rank(void *send_data, void *recv_data, MPI_Datatype datatype,
             MPI_Comm comm) {
  // 首先检查基本情况 - 仅支持此函数的MPI_INT和MPI_FLOAT。
  if (datatype != MPI_INT && datatype != MPI_FLOAT) {
    return MPI_ERR_TYPE;
  }

  int comm_size, comm_rank;
  MPI_Comm_size(comm, &comm_size);
  MPI_Comm_rank(comm, &comm_rank);

  // 要计算编号,我们必须将数字收集到一个进程中,对数字进行排序,然后分散结果的等级值。 
  //首先收集comm的进程0的数字。
  void *gathered_numbers = gather_numbers_to_root(send_data, datatype,
                                                  comm);

  // 获得每个进程的编号
  int *ranks = NULL;
  if (comm_rank == 0) {
    ranks = get_ranks(gathered_numbers, comm_size, datatype);
  }

  // Scatter the rank results
  MPI_Scatter(ranks, 1, MPI_INT, recv_data, 1, MPI_INT, 0, comm);

  // Do clean up
  if (comm_rank == 0) {
    free(gathered_numbers);
    free(ranks);
  }
}

流程如下:
这里写图片描述
五、总结
本节介绍了三种聚合通信,分别对应一对多,多对一,多对多通信。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值