自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(251)
  • 资源 (126)
  • 收藏
  • 关注

转载 交叉熵、KL散度、Jeffery分歧、JS散度

D_{JS}(P||Q)=(1/2)*D_{KL}(P||(P+Q)/2)+(1/2)*D_{KL}(Q||(P+Q)/2) DJS​(P∣∣Q)=(1/2)∗DKL​(P∣∣(P+Q)/2)+(1/2)∗DKL​(Q∣∣(P+Q)/2) 值域为[0,1],相等时为0,相对KL散度来说更精确。参考文献:KL散度、JS散度、Wasserstein距离如何理解KL散度的不对称性?Inequalities between...

2021-02-25 20:15:40 8

转载 顶会速递 | ICLR 2020录用论文之图神经网络篇

Composition-based Multi-Relational Graph Convolutional Networks链接 | https://openreview.net/pdf?id=BylA_C4tPr作者 | Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Partha Talukdar单位 | Carnegie Mellon University; Columbia UniversityGraph Neural Networks E

2021-01-20 20:46:05 80

原创 python 对于任意数据和曲线进行拟合并求出函数表达式的三种方案。

第一种是进行多项式拟合,数学上可以证明,任意函数都可以表示为多项式形式。具体示例如下。###拟合年龄import numpy as npimport matplotlib.pyplot as plt#定义x、y散点坐标x = [10,20,30,40,50,60,70,80]x = np.array(x)print('x is :\n',x)num = [174,236,305,334,349,351,342,323]y = np.array(num)print('y is :\n.

2021-01-20 11:04:06 70

转载 tesnorflow实现N个epoch训练数据读取的办法

方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读取一个batch_size的数据,直至最后读取的数据量达到N个epoch。说明,这个方式来实现epoch的输入是不合理。不是说每个样本都会被读取到的。对于这个的解释,从数学上解释,比如说有放回的抽样,每次抽取一个样本,抽取N次,总样本数为N个。那么,这样抽取过一轮之后,该样本也是会有1/e的概率没有被抽取到。所以,如果使用这种方式去训练的话,理论上是没有用到全部的数据集去训练的,很可能会造成过拟合的现象。我做了个小

2021-01-18 16:41:45 51

转载 1秒!简单了解论文的查找方式和阅读技巧

阅读论文 1.如何选择论文? 2.哪里找论文? 2.1 未知题目论文可借助平台: 2.2 已知题目论文可借助平台: 3.如何筛选优质论文? 4.如何管理论文? 5.如何阅读论文? 6.论文结构 7.如何更高效地阅读论文 1.如何选择论文?(1)综述论文:对某一领域的研究历史和现状的相关方法、算法进行汇总,对比分析,同时分析该领域未来发展方向。(2)专题论文:具体的算法、模.

2021-01-14 11:09:47 40

原创 Coursera台大机器学习课程笔记5 -- Theory of Generalization

本章思路:根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利用转化的思想,首先想想和mh(N)相关的因素可能有哪些?不难想到目前来看只有两个:假设的抽样数据集大小N; break point k(这个变量确定了假设的类型);那么,由此可以得到一个函数B,给定N和k可以确定该系列假设能够得到的最大的mh(N),那么新的目标便是证明B(N,k) <= Poly

2021-01-07 15:22:49 12

转载 Coursera台大机器学习课程笔记6 -- The VC Dimension

本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model Complexity Penalty的关系。一回顾由函数B(N,k)的定义,可以得到比较松的不等式mh(N)小于等于N^(k-1)(取第一项)。这样就可以把不等式转化为仅仅只和VC Dimension和N相关了,从而得出如下结论:1 mh(N)有break point k,那么其就是多..

2021-01-07 15:20:32 27

转载 李宏毅机器学习笔记()GNN

一、introductionHow do we utilize the structures and relationship to help our model?What if the graph is larger, like 20k nodes?What if we don‘t have the all the labels?在data structure上做convolution...

2021-01-07 14:52:53 14

转载 李宏毅机器学习笔记()Transfer Learning

一、transfer learningtarget data:现在要考虑的task直接相关。source data:和现在要考虑的task没有直接关系。四种可能:有label和无label。二、fine-tuningtarget data和source data同时都有label。target data量非常少(叫做one-shot learning),source data很多。某个人的语音很少。用source data直接去train model,然后用t..

2021-01-07 14:51:31 36

转载 李宏毅机器学习2020笔记(六)semi-supervised

一、半监督学习1、定义unlabeled的数量远大于labeled的数量。半监督学习分为直推学习(用了训练集的feature)和归纳学习(手上没有测试集)。人类也一直在做半监督学习。没有标签的数据(灰色点)的分布会影响划分。半监督学习有没有用取决于假设是否符合实际。2、生成模型中的半监督学习无标签数据会影响对先验概率的μ和Σ的估测,进一步影响分布的式子,影响boundary。一、E step:初始化一组参数,然后可以估算每一...

2021-01-07 14:50:37 24

转载 李宏毅机器学习2020笔记(五)RNN、LSTM

一、问题提出slot filling(槽填充):智慧客服、智慧订票系统中往往需要自动将词汇与slot对应。把词汇用向量表示。多加一个other维度,不在词典中就归类到other。也可以用一个词汇的字母的n-gram,如apple中包含app、ppl、ple。把这个vector放进network,得到的输出是input属于每个slot的几率。第二句话输出的taipei是出发地而不是目的地。我们希望network能记得上下文,根据不同的上下文产生不同...

2021-01-07 14:49:40 25

转载 李宏毅机器学习2020笔记(四)CNN

1、为什么用CNNDNN参数太多,需要更简单的模型。只看一小块区域。鸟嘴出现在图片的不同位置,但可以共用同一组参数。做subsampling对影像辨识没有太大影响,可以这样减少参数。2、CNN结构前两点通过卷积来处理,第三点通过池化来处理。3、卷积每一个filter里的参数都是被学出来的。做内积(对应位置相乘再求和)。这个filter的工作就是找对角连续出现的111,这样用同一个filter就可以侦测不同位置。...

2021-01-07 14:48:20 15

转载 李宏毅机器学习2020笔记(三)深度学习

一、深度学习1、简介不同的连接方法2、全连接前馈网络1*1+(-1)*(-2)+1=4--->sigmoid--->0.98相当于一个函数,输入一个向量,输出一个向量。如果w和b未知,神经网络就是一个比较大的function set。全连接、前馈。输入层只有data,输出层是最后一层,中间都称为隐藏层。现在基于神经网络的方法都是深度学习的方法。常常用矩阵运算来表示神经网络的运算。一连串的向量乘以矩阵再加上向...

2021-01-07 14:47:27 37

转载 李宏毅机器学习2020笔记(二)Classification

一、classification1、应用与问题定义如果作为regression来处理,为了照顾较远的点会得到紫色的线。因此简单地把归为一个数是不合理的。比如有3类,分别为123,因为12比较接近,23比较接近,但它们实际并没有关系,就不符合现实情况。假设是个二分类问题,loss就是错误的次数,错误一次为1,正确为0。但是这个loss函数不能进行微分,怎么解决呢?2、概率生成模型可以计算出x属于class 1的几率。需要计算从类1中挑出...

2021-01-07 14:45:35 23

转载 机器学习基础--分类(概率生成模型)

Classification: Probabilistic Generative ModelClassification概念描述分类问题是找一个function,它的input是一个object,它的输出是这个object属于哪一个class还是以宝可梦为例,已知宝可梦有18种属性,现在要解决的分类问题就是做一个宝可梦种类的分类器,我们要找一个function,这个function的input是某一只宝可梦,它的output就是这只宝可梦属于这18类别中的哪一个type输入数值化

2021-01-07 14:22:11 36

原创 为什么深度学习对训练样本的数量要求较高?

提问:最近在研究深度卷积神经网络,看到很多的深度学习训练都需要几百万的训练样本,我想请教各位为什么深度学习一定要这么多训练样本呢,假如样本只有几万或者几千,对性能会有影响吗?回答:作者:Sisyphus链接:https://www.zhihu.com/question/29633459/answer/45138977来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。对于classification model,有这样一个结论:上式中N是训练样本数量.

2021-01-06 21:37:49 234

转载 Scikit-learn实现XGBoost算法

XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。 • XGBoost的基学习器除了可以是CART(这个时候就是GBDT)也可以是线性分类器,而GBDT只能是CART。 • XGBoost的目标函数的近似用了二阶泰勒展开,模型优化效果更好。 • XGBoost在代价函数中加入了正则项,用于控制模型的复杂度(正则项的方式不同,如果你仔细点话,GBDT是

2021-01-02 17:14:13 67

转载 python sklearn svm模型的保存与加载调用

对于机器学习的一些模型,跑完之后,如果下一次测试又需要重新跑一遍模型是一件很繁琐的事,这时候我们就需要保存模型,再加载调用。楼主发现有这些保存模型的方法,网上有很多错误的例子,所以给大家在整理一下。(python3)1.利用pickleimport picklemodel.fit(train_X, train_y)s=pickle.dumps(model)f=open('svm.model', "wb+")f.write(s)f.close()print ("Done\n")模型

2021-01-02 14:49:13 86

原创 TensorFlow:实现CNN对MNIST数据集分类 与 朴素贝叶斯训练并生成MNIST样本python实现 与 LSTM 的 MNIST 分类 + 可视化

朴素贝叶斯生成新的样本数据,主要是通过训练时计算的先验概率p(y)和似然p(x|y)生成。首先会通过先验概率大小随机生成第c类,然后通过c类的似然概率大小,生成每一维的数据,最后就得到了新的样本。数据集加载方法load_mnist可以自行修改,这里用到了mnist-original.mat文件需要下载后放入当前路径的datasets/mldata下。from sklearn.datasets import fetch_mldatafrom collections import Counterimp

2020-12-25 21:07:58 37

原创 WIN10系统安装gym、mujoco以及Atari

本文涉及在windows10系统下gym、mujoco以及Atari的安装。系统:win10教育版python版本:3.6.8anconda版本:3.5.4gym版本:0.9.1mujoco_py版本:0.5.7mjpro版本:131第一步:创建conda环境ctrl+r 输入 cmd 确认conda create -n py36 python==3.6.8conda install numpy==1.16.0activate py36第二步:安装g..

2020-12-24 13:45:42 48

转载 win10安装mujoco一点细节

2 人赞同了该文章本文参考浪子:WIN10系统安装gym、mujoco以及Atari​zhuanlan.zhihu.com补充一点细节添加环境变量,本人根据github提示,只添加了两个环境变量即可,附上GitHub网址https://github.com/openai/mujoco-py​github.com也就是说需要添加名为MUJOCO_PY_MJKEY_PATH和MUJOCO_PY_MUJOCO_PATH的环境变量,其中一个是mujoco官方提供的mjkey的路径,另.

2020-12-24 13:17:17 81

转载 win10安装mujoco150出现distutils.errors.错误

win10安装mujoco150出现distutils.errors.win10安装mujoco150可以按照这位的文章来https://blog.csdn.net/weixin_44377470/article/details/104910010。在python中import mujoco_py时出现distutils.errors.之类的错误,那就在pip install -r requirements.txtpip install -r requirements.dev.txt之后不使用pi

2020-12-24 13:03:04 23

转载 Mujoco以及mujoco_py在win10下的从零开始无脑安装法

感觉大部分blog都是关于linux/macos的,这篇博文来记录一下mujoco以及mujocopy在win10下的安装法吧1. 下载mujoco下载网址:https://www.roboti.us/index.html这里注意一定要下载150的版本。因为对于windows用户,mujoco_py是只支持150的。(标黄部分)win+R CMD打开命令行,输入mkdir .mujoco然后将解压好的mujoco.zip 放进来,最后会是 C:\Users\evaljy\.

2020-12-24 10:57:20 138

原创 用于心电疾病诊断的深度学习模型库

用于心电疾病诊断的深度学习模型库github: https://github.com/hzzhangqf0558/ECG_NetsBaseline model collection of deep learning applied into ECGs. Those baseline models include 1D-ResNet, 1D-DenseNet, 1D-SE_ResNet, 1D-ResNext,1D-SE_ResNetV2, 1D-SE_ResNext and 1D-Top1Net(th

2020-12-23 20:12:19 71

转载 计算机视觉中的注意力机制

之前在看DETR这篇论文中的self_attention,然后结合之前实验室组会经常提起的注意力机制,所以本周时间对注意力机制进行了相关的梳理,以及相关的源码阅读了解其实现的机制一、注意力机制(attention mechanism)attention机制可以它认为是一种资源分配的机制,可以理解为对于原本平均分配的资源根据attention对象的重要程度重新分配资源,重要的单位就多分一点,不重要或者不好的单位就少分一点,在深度神经网络的结构设计中,attention所要分配的资源基本上就是权重了

2020-12-16 10:43:48 329

转载 信道编码之纠删码编码

简介随着数据的存储呈现出集中化(以分布式存储系统为基础的云存储系统)和移动化(互联网移动终端)的趋势,数据可靠性愈发引起大家的重视。集群所承载的数据量大大上升,但存储介质本身的可靠性进步却很小,这要求我们必须以更加经济有效的方式来保障数据安全。副本与纠删码都是通过增加冗余数据的方式来保证数据在发生部分丢失时,原始数据不发生丢失。但相较于副本,纠删码能以低得多的存储空间代价获得相似的可靠性。比如3副本下,存储开销为3,因为同样的数据被存储了三份,而在10+3(将原始数据分为10份,计算3份冗余)的纠删

2020-12-16 10:21:16 103

转载 矩阵补全(Matrix Completion)和缺失值预处理

目录1 常用的缺失值预处理方式 1.1 不处理 1.2 剔除 1.3 填充 2 利用矩阵分解补全缺失值 3 矩阵分解补全缺失值代码实现 4 通过矩阵分解补全矩阵的一些小问题 References矩阵补全(Matrix Completion),就是补上一个含缺失值矩阵的缺失部分。矩阵补全可以通过矩阵分解(matrix factorization)将一个含缺失值的矩阵 X 分解为两个(或多个)矩阵,然后这些分解后的矩阵相乘就可以得到原矩阵的近似 X',我们用这个近似矩阵 X'

2020-12-13 10:50:39 172

转载 生成对抗网络 | 实验

学习目录阿力阿哩哩:深度学习 | 学习目录​zhuanlan.zhihu.com上期我们介绍了阿力阿哩哩:生成对抗网络 | 原理及训练过程​zhuanlan.zhihu.com同样地,我们依旧通过实验来巩固我们刚刚所学的知识点。本次实验是基于Jupyer Notebook、Anaconda Python3.7与Keras环境。数据集是利用Minst手写体图像数据集。5.3.1 代码1. # chapter5/5_3_GAN.ipynb2. import random .

2020-12-12 15:19:22 47

转载 自编码器(VAE)利用重建概率的异常检测

基于变分自编码器(VAE)利用重建概率的异常检测 本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf摘要我们提出了一种利用变分自动编码器重构概率的异常检测方法。重建概率是一种考虑变量分布变异性的概率度量。重建概率具有一...

2020-12-12 14:09:44 460

转载 深度生成模型之自编码器(AutoEncoder)

。本讲先要介绍的是自编码器模型。作为一种无监督或者自监督算法,自编码器本质上是一种数据压缩算法。从现有情况来看,无监督学习很有可能是一把决定深度学习未来发展方向的钥匙,在缺乏高质量打标数据的监督机器学习时代,若是能在无监督学习方向上有所突破对于未来深度学习的发展意义重大。从自编码器到生成对抗网络,小编将和大家一起来探索深度学习中的无监督学习。1自编码器器所谓自编码器(Autoencoder,AE),就是一种利用反向传播算法使得输出值等于输入值的神经网络,它现将输入压缩成潜在空间表征,然后将这种表

2020-12-12 14:07:03 228

转载 机器学习常见的采样方法

Index数据采样的原因常见的采样算法失衡样本的采样02数据采样的原因其实我们在训练模型的过程,都会经常进行数据采样,为了就是让我们的模型可以更好的去学习数据的特征,从而让效果更佳。但这是比较浅层的理解,更本质上,数据采样就是对随机现象的模拟,根据给定的概率分布从而模拟一个随机事件。另一说法就是用少量的样本点去近似一个总体分布,并刻画总体分布中的不确定性。因为我们在现实生活中,大多数数据都是庞大的,所以总体分布可能就包含了无数多的样本点,模型是无法对这些海量的数据进行直接建模的(..

2020-12-09 11:42:13 114

转载 史上最全采样方法详细解读与代码实现

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice欢迎大家star,留言,一起学习进步1.什么是采样在信号系统、数字信号处理中,采样是每隔一定的时间测量一次声音信号的幅值,把时间连续的,模拟信号转换成时间离散、幅值连续的采样信号。如果采样的时间间隔相等,这种采样称为均匀采样。在计算机系统中,有一个重要的问题就是给定一个概率分布p(x) , 我们如何在计算机中生成它的样本。平时我们接触比较多的场景是,给定一堆样本数据,求出这堆

2020-12-09 11:41:04 305

转载 谈Elasticsearch下分布式存储的数据分布

 对于一个分布式存储系统来说,数据是分散存储在多个节点上的。如何让数据均衡的分布在不同节点上,来保证其高可用性?所谓均衡,是指系统中每个节点的负载是均匀的,并且在发现有不均匀的情况或者有节点增加/删除时,能及时进行调整,保持均匀状态。本文将探讨Elasticsearch的数据分布方法,文中所述的背景是Elasticsearch 5.5。  在Elasticsearch中,以Shard为最小的数据分配/迁移单位。数据到节点的映射分离为两层:一层是数据到Shard的映射(Route),另一层是Shard到节点

2020-12-07 10:32:04 19

原创 机器学习需要多少训练数据?

机器学习需要多少训练数据?取决于:所需解决问题的难易程度 所采用的模型的复杂程度(模型参数数量) 想要达到什么样的性能① 最快的方法查找相关领域的论文资料,别人一般用多少的数据量② 经验范围回归分析:要训练出一个性能良好的模型,所需训练样本数量应是模型参数数量的10倍。缺点:稀疏特征:例如稀疏特征的编码是01001001对于模型的训练能够起到作用的特征是少数的,而不起作用的特征占大多数。依照上述线性规则,若模型对于每个特征分配相应的参数,也就是说对于无用的特征也分配了.

2020-12-07 10:25:27 86

转载 机器学习100+问

目录概述篇:1. 机器学习的发展历史上有哪些主要事件?2. 机器学习有哪些主要的流派?它们分别有什么贡献?3. 讨论机器学习与人工智能的关系4. 讨论机器学习与数据挖掘的关系5. 讨论机器学习与数据科学、大数据分析等概念的关系6. 机器学习有哪些常用的应用领域?请举例说明其应用7. 机器学习能解决哪些问题?每一类使用的常用方法有哪些?举例说明其应用8. 举例说明机器学习的...

2020-12-07 00:23:19 19365

原创 数据指标的权重确定

分为三类:主观赋权法、客观赋权法和组合赋权法。(1)主观赋权法:根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断得到。包括专家调查法(Delphi法)、层次分析法(AHP)、二项系数法、环比评分法、最小平方法等。主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限

2020-12-07 00:14:10 744

原创 SMOTE for Imbalanced Classification with Python

Last Updated on August 21, 2020Imbalanced classification involves developing predictive models on classification datasets that have a severe class imbalance.The challenge of working with imbalanced datasets is that most machine learning techniques will

2020-12-06 20:58:22 54

转载 分类问题样本数据不平衡的几个解决办法

分类时,由于训练集合中各样本数量不均衡,导致模型训偏在测试集合上的泛化性不好。解决样本不均衡的方法主要包括两类:(1)数据层面,修改各类别的分布;(2)分类器层面,修改训练算法或目标函数进行改进。还有方法是将上述两类进行融合。数据层面1. 过采样(1) 基础版本的过采样:随机过采样训练样本中数量比较少的数据;缺点,容易过拟合;(2) 改进版本的过采样:SMOTE,通过插值的方式加入近邻的数据点;(3) 基于聚类的过采样:先对数据进行聚类,然后对聚类后的数据分别进行过采样。这种方法能够降低

2020-12-05 15:37:49 330

原创 数据集样本类别不均衡时,训练测试集应该如何做?

作者:小鹿鹿lulu链接:https://www.zhihu.com/question/373862904/answer/1039080874来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。多分类任务中类别不均衡是非常常见的一个问题,但是差别多少才算分布不均匀呢?这个没有一个确定的衡量标准。根据我个人的经验的话,不同类别数量差异超过一个数量级,我才会认为样本类别分布不均匀,需要特别关注和调整。比如题主的截图,最大的类别数是最小类别的三个数量集,差距非常大,触犯.

2020-12-05 15:35:34 251

原创 Does increase in training set size help in increasing the accuracy perpetually or is there a saturat

I am using a boosted trees classifier which is giving better accuracy then all other linear classifier I tried. I have almost an unlimited training data at my disposal , I wanted to know if there is a saturation point in training beyond which even if you i

2020-12-05 15:23:28 21

实变函数(胡适耕).pdf

以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分...

2019-06-02

微分几何-彭家贵.pdf

微分几何彭家贵答案 - 10.求曲面(, , ) = 的 Gauss 曲率... 微分几何彭家贵答案

2019-06-02

Classic Computer Science Problems in Python.pdf

python中的经典计算机科学问题通过对经过时间考验的场景、练习和算法的挑战,从计算机科学领域加深了您对解决问题技术的了解。在搜索、聚类、图表等例子中,您将记住您忘记的重要事情,并发现解决“新”问题的经典解决方案!

2019-05-19

36Kr:人工智能开启机器人新时代——商用服务机器人行业研究报告.pdf

36Kr:人工智能开启机器人新时代——商用服务机器人行业研究报告.pdf

2020-03-19

LSTM多变量预测

LSTM多变量预测,本程序利用TensorFlow构建一个简易LSTM模型,内含对多个变量因子,以及本程序的运行环境。

2019-09-24

时间序列分析.pdf

时间序列分析,对于数据处理很有帮助的书籍,适合初学者

2018-01-29

Data Structures and Algorithms Using Python.pdf

越来越多的程序员转向了Python,这本书将使他们了解他们需要的东西。Necaise介绍了基本的数组结构,并探讨了实现和使用多维数组的基本原理。本文介绍了许多Python内置数据结构和构造的底层机制。在本书中,许多ADT和应用程序都作为线程进行了讨论,以允许在引入新的数据结构时进行多种实现。还介绍了各个章节主题的实际应用。这使程序员能够完全覆盖Python语言中的抽象和基本数据结构和算法。

2019-05-19

深入浅出数据分析(美)完整中文版

深入浅出数据分析(美)完整中文版。Head First Data Analysis Michael Milton 著

2018-01-31

Essential Algorithms.pdf

介绍最有用的算法 计算机算法是编程的基本方法。专业的程序员需要知道如何使用算法来解决困难的编程问题。这本书用简单直观的英语写,描述了如何和何时使用最实用的经典算法,甚至是如何创建新的算法来满足未来的需要。这本书还包括一系列的问题,可以帮助读者为节目面试做准备。 *显示操作常用数据结构(如数组、链接列表、树和网络)的方法 *处理高级数据结构,如堆、2-3树、B树 *解决一般的问题解决技术,如分支和绑定、分而治之、递归、回溯、启发式等 *回顾排序和搜索、网络算法和数字算

2019-05-19

ARIMA模型-matlab代码

ARIMA模型-matlab代码,可以根据自己的实际情况进行参数调节,实现所需要的效果。

2018-01-25

CES2019官方回馈:价值2000美元报告 _ 资讯 _ 数据观 _ 中国大数据产业观察_大数据门户_files.zip

CES2019官方回馈:价值2000美元报告 _ 资讯 _ 数据观 _ 中国大数据产业观察_大数据门户_files.zip

2020-03-19

上海交大:新冠疫情的全球蔓延对中国经济影响的分析【80页】.pdf

上海交大:新冠疫情的全球蔓延对中国经济影响的分析【80页】.pdf

2020-03-19

脑机接口中的机器学习.pdf

脑机接口中的机器学习.pdf

2020-05-12

Eswaraprasad_Storing_at_the_Edge.pdf

Cloud Storage

2020-11-25

Israni_Dinesh_Bulletproofing_Stateful_Applications_on_Kubernetes.pdf

Cloud Storage

2020-11-25

Klimovic_Ana_Pocket_Elastic_Ephemeral_Storage_for_Serverless_Analytics.pdf

Cloud Storage

2020-11-25

Molanus_Jeffry_Container_Attached_Storage.pdf

Cloud Storage

2020-11-25

Sengupta_D_Kumar_U_Using_CDMI_to_Create_Replicate_Storage_Objects_and_Data.pdf

Cloud Storage

2020-11-25

Slik_David_Cloud_Storage_Pluggable_Access_Control.pdf

Cloud Storage

2020-11-25

Ali_Kasinadhuni_Managing_Disk_Volumes_in_Kubernetes.pdf

Cloud Storage

2020-11-25

Yang_L_Zhu_D_Achieving_10-Million_IOPS_from_a_single_VM_on_Windows_Hyper-V.pdf

Cloud Storage

2020-11-25

Yoshida_Hiroshi_Experiments_in_Storing_Data__Cold_Storage_Services.pdf

Cloud Storage Cloud Storage

2020-11-25

Aggarwal_Data_Architecture_for_Data-Driven_Enterprises.pdf

Big Data Analytics IoT

2020-11-25

Data Protection and Capacity Optimization

Data Protection and Capacity Optimization

2020-11-25

Dexter_Michael_Combating_Evolving_Ransomware_at_the_Block_Level.pdf

Data Protection and Capacity Optimization

2020-11-25

Guicherd-Callin_T_Distributed_Data_Integrity_Assurance_and_Repair.pdf

Data Protection and Capacity Optimization

2020-11-25

算法导论(第三版).pdf

算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf,算法导论(第三版).pdf

2020-11-18

a simple, Unix-like teaching operating system-rev8.pdf

a simple, Unix-like teaching operating system-rev8,

2020-11-08

ISCA 2018 论文.zip

ISCA 2018 论文.zip

2020-08-10

HPCA-2019.zip

HPCA 2019年会议的论文集

2020-08-10

SOSP 2019.zip

SOSP是一个相对古老的会议,它是由ACM下属的SIGOPS (the ACM Special Interest Group on Operating Systems)于1967年创办的。这个会议也是两年一次,迄今为止已经举办了20届,每届收录的文章在20篇左右。

2020-08-10

Python Algorithms, 2nd Edition.pdf

python算法,第2版解释了python算法分析和设计python算法,第2版解释了python算法分析和设计的方法。这本书由《开始的Python》一书的作者Magnus Lie Hetland撰写,重点关注经典算法,但也对基本的算法问题解决技术有了扎实的理解。 这本书以高度可读的方式处理编程和计算机科学中一些最重要和最具挑战性的领域。它涵盖了算法理论和编程实践,演示了理论如何在真实的Python程序中反映出来。解释了内置在Python语言中的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构。 的方法。这本书由《开始的Python》一书的作者Magnus Lie Hetland撰写,重点关注经典算法,但也对基本的算法问题解决技术有了扎实的理解。 这本书以高度可读的方式处理编程和计算机科学中一些最重要和最具挑战性的领域。它涵盖了算法理论和编程实践,演示了理论如何在真实的Python程序中反映出来。解释了内置在Python语言中的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构。

2019-05-19

分布式优化及其在智能电网的应用

分布式优化及其在智能电网的应用

2020-05-12

Mastering Probabilistic Graphical Models using Python.pdf

概率图模型是机器学习中的一种技术,它利用图论的概念来简明地表示和优化预测数据问题中的值。 图形模型为我们提供了在数据中寻找复杂模式的技术,并广泛应用于语音识别、信息提取、图像分割和基因调控网络建模等领域。 本书从概率论和图论的基础出发,接着讨论各种模型和推理算法。讨论了所有不同类型的模型以及创建和修改模型的代码示例,并对它们运行了不同的推理算法。有一整章将继续介绍朴素的贝叶斯模型和隐藏的马尔可夫模型。这些模型已经用实际例子进行了深入的讨论。

2019-05-18

Python Data Science Handbook.pdf

Python Data Science Handbook是一本优秀的python数据分析入门教材. 本资源中包含英文pdf文件和官方提供的Jupyter Notebook , 内含书上所有的代码和图表.

2019-05-18

《蓄势:产业互联网2019回顾与2020展望报告》.pdf

《蓄势:产业互联网2019回顾与2020展望报告》,非常的经典,关于产业互联网2019回顾与2020展望报告

2020-03-19

基于参数估计误差的自适应控制: 理论及应用

基于参数估计误差的自适应控制: 理论及应用

2020-05-12

SignalR代码

SignalR当然也提供了非常简单易用的高阶API,使服务器端可以单个或批量调用客户端上的JavaScript函数,并且非常 方便地进行连接管理,SignalR都非常容易实现客户端连接到服务器端,或断开连接,客户端分组,以及客户端授权,使用。

2018-09-13

5G最新进展深度解析——全集 V1.1.pdf

5G最新进展深度解析——全集 V1.1.pdf

2020-03-19

Business Analytics: Data Analysis & Decision Making

Business Analytics: Data Analysis & Decision Making (英语) 精装 – 2017年第六版S. Christian Albright (作者), Wayne L. Winston (作者)

2018-03-17

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除