[LeetCode] Minimum Total Space Wasted With K Resizing Operations

Description

Minimum Total Space Wasted With K Resizing Operations: You are currently designing a dynamic array. You are given a 0-indexed integer array nums, where nums[i] is the number of elements that will be in the array at time i. In addition, you are given an integer k, the maximum number of times you can resize the array (to any size).

The size of the array at time t, sizet, must be at least nums[t] because there needs to be enough space in the array to hold all the elements. The space wastedat time t is defined as sizet - nums[t], and the total space wasted is the sumof the space wasted across every time t where 0 <= t < nums.length.

Return the minimum total space wasted if you can resize the array at most ktimes.

Note: The array can have any size at the start and does not count towards the number of resizing operations.

Example:

Input: nums = [10,20,15,30,20], k = 2
Output: 15
Explanation: size = [10,20,20,30,30].
We can set the initial size to 10, resize to 20 at time 1, and resize to 30 at time 3.
The total wasted space is (10 - 10) + (20 - 20) + (20 - 15) + (30 - 30) + (30 - 20) = 15.

Solution

The basic idea is DP(Dynamic Programming):

The elements before index i don’t change, which makes the cost c1 of the first part (0 1 … i - 2).

The kth resize happens among the ith elements of the array, which makes the cost c2 of the second part (i - 1).

And, k - 1 times happend among the rest elements of the array, whcih makes the cost c3 of the third part (i i + 1 … n - 1).

So, the total space cost c = c1 + c2 + c3.

Notice that for the answer, the first cost c1 = 0.

For example, array = [10,20,15,30,20], k = 2;

index		0		1		2		3		4		5

array		10		20		15		30		20

dp

k = 0		55		35		25		10		0		0

k = 1		25		15		10		0		0		0

k = 2		15		/		/		/		/		/

Code

class Solution {
public:
    int minSpaceWastedKResizing(vector<int>& nums, int k) {
        int n = nums.size();
        if(k >= n - 1)  return 0;
        
        vector<vector<int>> dp(k + 1, vector(n + 1, 0));
        for(int i = 0; i < n; i++) {
            int maxima = nums[i], sum = 0, ans = INT_MAX;
            for(int j = i; j < n; j++) {
                maxima = max(maxima, nums[j]);
                sum += nums[j];
            }
            dp[0][i] = maxima * (n - i) - sum;
        }
        if(k == 0)  return dp[0][0];
        
        for(int time = 1; time < k; time++) {
            for(int i = 0; i < n; i++) {
                int maxima = nums[i], sum = 0, ans = INT_MAX;
                for(int j = i; j < n; j++) {
                    maxima = max(maxima, nums[j]);
                    sum += nums[j];
                    int waste = maxima * (j - i + 1) - sum;
                    ans = min(ans, dp[time - 1][j + 1] + waste);
                }
                dp[time][i] = ans;
            }
        }
        
        int maxima = nums[0], sum = 0, ans = INT_MAX;
        for(int i = 0; i < n; i++) {
            maxima = max(maxima, nums[i]);
            sum += nums[i];
            int waste = maxima * (i + 1) - sum;
            ans = min(ans, dp[k - 1][i + 1] + waste);
        }
        return ans;
    }
};

Complexity

Time complexity: n ^ 2 for DP updation, and k for resizing. So, the total time cost is O(k * (n ^ 2))

Space complexity: O(k * (n ^ 2))

Optimization

This is a concise solution, and space complexity is O(k * n).

class Solution {
public:
    int minSpaceWastedKResizing(vector<int>& nums, int k) {
        int n = nums.size();
        if(k >= n - 1)  return 0;
        
        vector<int> dp(n + 1, 1e9);
        dp[n] = 0;
        
        for(int time = 0; time <= k; time++) {
            for(int i = 0; i < n; i++) {
                int maxima = nums[i], sum = 0, ans = 1e9;
                for(int j = i; j < n; j++) {
                    maxima = max(maxima, nums[j]);
                    sum += nums[j];
                    int waste = maxima * (j - i + 1) - sum;
                    ans = min(ans, dp[j + 1] + waste);
                }
                dp[i] = ans;
                if(time == k)   break;
            }
        }
        return dp[0];
    }

};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值