AI
文章平均质量分 90
星辰大漠
这个作者很懒,什么都没留下…
展开
-
【深度学习】谷歌云GPU服务器创建与使用指南(二)
接上一篇:【深度学习】谷歌云GPU服务器创建与使用指南(一)这篇介绍ssh连接及一款客户端xshell本篇将分为以下几点讲述:1.ssh客户端2.ssh公钥配置3.使用xshell连接ssh4.使用xshell建立隧道,以访问服务器内网ip。5.在4.的前提下使用Tensorboard 查看实验数据--------------------------原创 2018-01-09 14:28:31 · 22032 阅读 · 5 评论 -
SR(超分辨)学习笔记
super resolutionpaperDetail-revealing Deep Video Super-resolutionexperiment原创 2018-01-30 18:04:07 · 1253 阅读 · 0 评论 -
【深度学习】谷歌云GPU服务器创建与使用指南(一)
相关【深度学习】谷歌云GPU服务器创建与使用指南原创 2018-01-08 16:36:05 · 20687 阅读 · 14 评论 -
【深度学习】谷歌云GPU服务器创建与使用指南(三)
上一篇介绍了如何使用ssh。http://blog.csdn.net/sinat_25838589/article/details/79012530本篇主要介绍:在服务器中安装显卡驱动及配置深度学习框架。服务器与本地主机的区别(待补充)在配置本地Linux系统(比如ubuntu)主机的深度学习框架时,显卡驱动的安装按照提示一步一步进行即可。但是,在给服务器安装GPU驱动时,就要考虑到显卡驱动中的显...原创 2018-01-20 22:27:29 · 9351 阅读 · 4 评论 -
MAC终端使用ssh连接Google cloud VM
在建立好服务器后,电脑端要通过ssh连接到VM实例。 1.根据GCP的官方教程https://cloud.google.com/compute/docs/instances/connecting-to-instance,分为:创建秘钥、上传秘钥、连接,这3个步骤每次需要连接VM时,需要在终端中输入 sudo ssh -i KEY_mac_google [usr name]@[VM IP]...原创 2018-03-06 18:42:21 · 13210 阅读 · 0 评论 -
SR学习笔记
ResearchPhoto-Realistic Single Image Super-Resolution Using a Generative Adversarial Network(2018 CVPR) https://arxiv.org/pdf/1609.04802.pdfImage Super-Resolution Using Deep Convolutional Networks ...原创 2018-03-29 10:56:29 · 2146 阅读 · 1 评论 -
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations 论文笔记
Abstract深度卷积神经网络在图像超分辨率中取得了空前成就。 然而,已有的基于深度卷积神经网络的图像超分辨方法基本上是假设低分辨图片是由高分辨率图片通过双三次插值的方法下采样得到的。这就不可避免的造成了当真正的低分辨率图片不遵循双三次插值下采样时,模型的表现将变得不好。为了解决这一问题,我们提出了一种维度拉长策略,将模糊和噪声作为输入。这种方法可以应对多倍和空间改变的退化模型,显然提...原创 2018-07-16 18:49:24 · 4323 阅读 · 0 评论 -
python实现Convolution
不借助深度学习框架,直接使用numpy实现一个卷积操作import numpy as npmat = np.array([[1,2,3,4,5,6,7,8], [1,2,3,4,5,6,7,8], [1,2,3,4,5,6,7,8], [1,2,3,4,5,6,7,8], [1,2...原创 2019-09-11 21:42:30 · 1506 阅读 · 0 评论